РАСЧЕТЫ РАЗМЕРОВ СТРУКТУРНЫХ МОДЕЛЬНЫХ АТОМОВ И МЕЖЪЯДЕРНЫХ РАССТОЯНИЙ НА ПРИМЕРЕ СПЛАВОВ AuAg и AuCu

Д.Б. Титоров

Физико-технический институт УрО РАН, г. Ижевск, Россия

В современной науке представления о размерах атомов весьма неопределенные. Например, считается, что размеры у атомов зависят от того, каким типом связи он соединен с другими атомами в веществе. Соответственно, у атома может быть металлический, ионный, ковалентный и ван-дер-вальсовский радиусы. Во многих случаях размеры атомов для представления о структуре вещества не требуются. При представлении структуры каждый атом может быть представлен точкой с известными координатами. Можно структуру вещества представить континуальным (непрерывным) пространственным распределением электронной плотности, в которое вкраплены атомные ядра. Возможны и другие представления [1]. Но это – если структура известна, то есть экспериментально определена, главным образом, методом рентгеноструктурного анализа. Прогнозировать структуру вещества, а именно это главная из фундаментальных проблем материаловедения, пытаются при помощи минимумов потенциальной поверхности. Но детальное решение такой задачи без предварительных предположений о структуре вещества нереально. Для кластера только из 13 атомов минимумов около полутора тысяч. А с увеличением числа атомов в кластере их числе экспоненциально увеличивается [2].

Современная электронно-квантовая модель атомов сформировалась при анализе спектральных экспериментальных данных. Поэтому, по происхождению она является спектральной моделью атомов (СпМА) и применима в основном к решению спектральных проблем, нежели структурных. При решении задачи моделирования формирования различных кристаллических структур найдена [3, 4] структурная модель атома (СтМА) в виде непроницаемого шара с радиусом R_{in} , окруженного оболочкой с радиусом R_{sh}, в которую могут проникать оболочки других атомов. Так в геометрической форме отражено наличие внешних и внутренних электронов у электронно-квантовой модели атомов и перекрытие электронных оболочек при соединении СпМА. В [5] показано, что,

используя СтМА — модель взаимно проникающих атомов, межатомные силы можно моделировать силами электростатического и теплового происхождения. Для расчета их значений достаточно знание надежных экспериментальных данных о классических физических свойствах чистых простых веществ, таких как удельный вес, теплоемкость, коэффициент теплового удлинения и др., а так же о их кристаллической структуре (типе решетки и ее параметрах).

Главным достоинством СтМА – модели взаимно проникающих атомов является то, что она позволяет моделировать формирование структуры вещества без предварительных предположений о структуре [6, 7]. Но для этого необходимо знать размеры модельных взаимно проникающих атомов, и уметь на их основе прогнозировать межатомные расстояния. В данной статье на примере Au, Ag, Cu и их сплавов показаны схемы вычислений размеров модельных взаимно проникающих атомов и межатомных расстояний.

Сплавы золота и серебра образуют непрерывный ряд твердых растворов с одинаковой ГЦК кристаллической структурой [8]. Параметр ГЦК решетки золота меньше, чем параметр ГЦК решетки серебра. Поэтому при добавлении золота в сплав на основе серебра параметр ГЦК решетки сплава уменьшается. Можно было ожидать, что если, наоборот, добавлять серебро в сплав на основе золота, то параметр ГЦК решетки должен увеличиваться. Однако эксперименты показывают обратную зависимость. При добавлении в сплав на основе золота до пятидесяти процентов серебра параметр ГЦК решетки сплава, не увеличивается, а уменьшается. Этот факт противоречит правилу Вегарда [9] и объяснения ему пока не найдено. Поэтому важно, используя предложенные методы расчета межатомных сил на основе модели взаимно проникающих атомов [5], вычислить значения размеров атомов Au и Ag и, главное, межъядерных расстояний в сплавах Au с Ад и сопоставить результаты расчетов с экспериментальными данными [8].

РАСЧЕТЫ РАЗМЕРОВ СТРУКТУРНЫХ МОДЕЛЬНЫХ АТОМОВ И МЕЖЪЯДЕРНЫХ РАССТОЯНИЙ НА ПРИМЕРЕ СПЛАВОВ AuAg и AuCu

1. Расчеты размеров модельных взаимно проникающих атомов Au, Ag и Cu

В работе [5] показано, как при парном взаимном проникновении внешних оболочек структурных модельных атомов могут возникать электростатические силы межатомного притяжения (F_{Cattr}) и отталкивания (F_{Cse}).

На рисунке 1 представлен кластер ГЦК решетки из 13 атомов. В центральный атом 1 проникли 12 атомов первой координационной сферы. Центры атомов 1-7 в плоскости рисунка; центры атомов 8-10 — над плоскостью; центры атомов 11-13 — под плоскостью.

Электростатическая сила притяжения (утолщенная стрелка) возникает между положительным зарядом, некомпенсированным внутренними электронами атома 1, и отрицательным зарядом сегмента атома 2, проникшего в атом 1 своей оболочкой. Отрицательный заряд внешних электронов каждого атома равномерно распределен по его внешней оболочке. Силы отталкивания (тонкие стрелки) между атомом 2 и остальными атомами (3 – 13), тоже проникшими в центральный атом 1 – это силы отталкивания между их отрицательно заряженными сегментами, проникшими в центральный атом.

Но расчеты показали, что кулоновскую силу межатомного притяжения, линия 1 на рис. 2, кулоновские силы отталкивания даже в сумме, линия 2 на рис. 2, не могут уравновесить. В [5] сделано предположение, что разницу кулоновских сил межатомного притяжения и отталкивания уравновешивает сила, линия 3 на рис. 2, которая обеспечивает тепловое удлинение (F_{hs}) и предложена схема ее вычисления.

Поскольку значения кулоновских сил межатомного притяжения и отталкивания зависят от размеров модельных взаимно проникающих атомов, решая уравнение

$$F_{Cattr} = \Sigma F_{Cse} + F_{hs}$$
 (1)

относительно размеров модельных атомов, можно вычислить их размеры.

Используя приведенные в [5] выражения (3 - 8) и известные значения необходимых физических величин и параметров [10, 11], были рассчитаны физические величины и параметры модельных взаимно проникающих атомов Au, Ag и Cu.

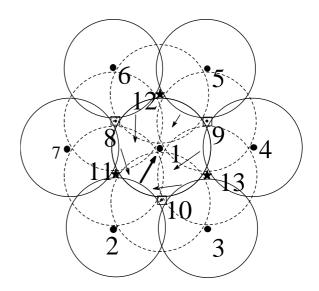


Рисунок 1 — Распределение электростатических сил в кластере из 13 одинаковых атомов ГЦК решетки. Центры атомов 1-7 (большие черные точки и сплошные линии окружностей) расположены в плоскости рисунка; центры атомов 8-10 (квадратики с черные точками внутри и пунктирные линии окружностей) расположены над плоскостью рисунка; центры атомов 11-13 (звездочки и пунктирные линии окружностей) расположены под плоскостью рисунка. Широкая стрелка — сила притяжения; тонкие стрелки — силы отталкивания

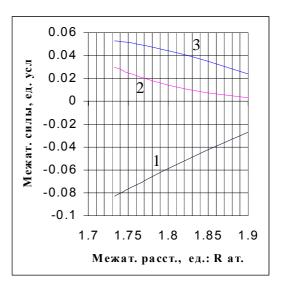


Рисунок 2 — Зависимость значений электростатических сил притяжения (1) и отталкивания (2), а так же разницы их величин (3) от межатомного расстояния в кластере из 13 одинаковых атомов ГЦК решетки (Rat — радиус атомов)

Последние, в свою очередь, были использованы для расчета отношений внутреннего и внешнего радиусов ($f=R_{in}/R_{sh}$), и, в конечном счете, значений радиусов внешних оболочек (R_{sh})каждого из атомов.

Ниже приведены известные значения необходимых физических величин и параметров (01 - 06) и значения ряда рассчитанных характеристик (07 - 17) для атомов золота, серебра и меди*.*Для расчетов выбрана частота колебания атомов $v = 10^{13} \, \text{c}^{-1}$, так как это значение наиболее часто упоминается в литературе при описании параметров колебаний атомов в твердом теле [12÷14]. Значение f = 0.75 было выбрано для Au потому, что это один из самых тяжелых ГЦК металлов, а значение f = 0.75 близко к предельному геометрическому отношению $R_{in}/R_{sh} = 0.732$ взаимно проникающих неоднородных сфер, из которых возможно формирование ГЦК структуры [3, 4]. Предварительные расчеты показали, что при выбранных параметрах для золота выражение (1) справедливо при у = 11%. Поэтому и для других атомов было использовано такое же значение у.

01	Вещество	Au	Ag	Cu
02	Решетка, координационное число $d_1 \times 10^{-9}$ м (крат-	ГЦК, 12	ГЦК, 12	ГЦК, 12
03	чайшее меж- атомное расстоя- ние) $\alpha \times 10^{-6} \text{ K}^{-1} \text{ (ко-}$	0.2882	0.2888	0.2556
04	эффициент теп- лового удлине- ния)	14.1	19.1	17.0
05	$M \times 10^{-27}$ кг (атом- ная масса) $c_{\rm pAt} \times 10^{-23}$	327.07 7	179.12 6	105.51 3
06	²³ дж/атомК (атомная тепло- емкость) c _g ^k _{At} × 10	4.218	4.201	4.052
07	23 дж/атомК (кинетическая составляющая атомной теплоемкости) p с p q х 10	0.7416	0.5525	0.2269
08	тенциальная со- ставляющая атомной тепло- емкости)	3.4763	3.6489	3.8249
09	${}^{16c}c_{p}{}^{p}_{At} \times 10^{-23} дж/K$ (потенциальная составляющая атомной теплоемкости на одну межатомную связь)	0.2897	0.3041	0.3187
10	$\Delta d_1 \times 10^{-15}$ м/K = $d_1 \alpha$ (уд- линение меж- атомного рас-	4.06	5.52	4.34

стояния при нагреве на 1 градус)

11	$^{\rm fcc}F_{\rm hs} \times 10^{-}$ 8 H = $^{\rm 1fcc}c_{\rm p}^{\ p}_{\rm At}/\Delta d_{1}$ (сила действующая при тепловом удлинении одной межатомной связи)	0.0714	0.0551	0.0734
12	$f = [d_1(1-2y)-R_{sh})]/R_{sh} **$	0.75	0.84	0.83
13	F _{Oattr} усл.ед. (Ку- лоновская сила притяжения)*** ^{1fcc} F _{Ose} усл.ед. (Кулоновская	0.0765	0.0453	0.048
14	сила отталкивания между проникшими в одинатом сегментами в ГЦК решетке) $f_{CC}^{Fep} = F_{Oatt} $	0.025	0.0087	0.0095
15	1 fcc F _{Qse} усл.ед. (Разница между кулоновскими силами притяже- ния и отталкива- ния в ГЦК решет- ке)	0.0515	0.0368	0.0385
16	$^{1}F_{hs}$ усл.ед. = $^{1fcc}F_{hs}/(R_{sh}^{2}/Kq_{1}q_{2})$	0.0511	0.0358	0.0378
17	R _{sh} × 10 ⁻⁹ нм (радиусы внешних оболочек или атомов)	0.1285	0.1224	0.1089

**Так как колебания атомов хаотические, то кратчайшее межатомное расстояние (d_1) включает не только размеры атомов, но и амплитуды их колебаний. Соответственно, $d_1 = R_A + X_A + R_B + X_B$, где X_A и X_B — амплитуды колебаний соответствующих атомов. Точные значения X_A и X_B не известны. Однако принято считать [12-14], что атомы колеблются с амплитудой yd_1 , где $y = X/d_1$. Поскольку в простом веществе атомы одинаковые, то

$$R_{sh} = (1-2y)d_1/(1+f),$$
 (2)

а доля непроникновения взаимно проникших модельных атомов (f), то есть отношение радиуса внутренней области модельного атома, в которую проникновение невозможно, к радиусу атома – радиусу внешней оболочки

$$f = [d_1(1-2y)-R_{sh}]/R_{sh}$$
 (3)

***Чтобы определить значение силы в Ньютонах, надо значение силы при заданном межатомном расстоянии, указанное в условных единицах, умножить на (Kq_1q_2/R_{sh}^2) , где $K = 9*10^9 Nm^2/C^2$ — электрическая постоянная; q = ne, где n = konuvectbo внешних электро-

РАСЧЕТЫ РАЗМЕРОВ СТРУКТУРНЫХ МОДЕЛЬНЫХ АТОМОВ И МЕЖЪЯДЕРНЫХ РАССТОЯНИЙ НА ПРИМЕРЕ СПЛАВОВ AuAg и AuCu

нов, а $e = 1.6 \times 10^{-19}\, C$ — величина заряда электрона; R_{sh} — радиус оболочки модельных атомов.

Вычисленные значения радиусов оболочек атомов Au, Ag и Cu приведены в строчке 17.

2. Расчеты межатомных расстояний в сплавах AuAg и AuCu

Чтобы оценить полученные значения радиусов модельных атомов и действующих между ними сил была поставлена задача, используя их значения, рассчитать межатомные расстояния в сплавах золота с серебром для сравнения с надежно установленными экспериментально данными. Для этих расчетов была использована схема взаимодействия атомов в пределах кластера решетки ГЦК, состоящего из атомов первой координационной сферы и ее центрального атома. Используя полученные выше значения атомных радиусов, рассчитывали расстояния между центральным атомом (1) и атомом (2) при котором электростатические и тепловые силы, которые действуют на проникший атом (2), уравновешены.

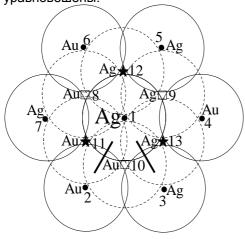


Рисунок 3 — Схема распределения шести атомов Au и Ag в кластере из 13 атомов сплава AuAg с ГЦК решеткой. (Обозначения расположения атомов те же, что и на рис.1). Широкими линиями отмечены атомы, проникшие в центральный атом, для которых проводился расчет

Сплавы с малым содержанием (≈ 8%) одного из элементов моделировали состоящим из кластеров, которые содержат единственный атом одного элемента и остальные 12 атомов – второго. Этот единственный атом может с равной вероятностью находиться в одном из 13 узлов кластера. Расчеты проводились при положениях этого единственного

атома в каждом из узлов кластера относительно атома 2.

Предполагалось, что сплав с равным количеством обоих элементов состоит из кластеров двух типов. В этом случае в первой координационной сфере всех кластеров содержалось по шесть равномерно распределенных атомов обоих элементов. Но в одной половине кластеров в центре находились атомы одного элемента, а в другой – другого (рисунок 3). Рассчитывали силы, которые действуют на проникший атома Au (атом 2) и атом Ад (атом 3) и определяли межатомные расстояния, при которых силы притяжения и отталкивания, действующие на выбранный атом со стороны других атомов кластера, уравновешены. Далее определяли среднее значение межатомного расстояния.

На рисунке 4 представлены графики изменения среднего межатомного расстояния в сплавах AuAg в зависимости от содержания элементов.

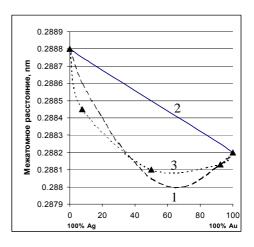


Рисунок 4 — Изменение кратчайшего межатомного расстояния в сплавах AuAg в зависимости от содержания элементов.

- 1 зависимость построена по экспериментальным данным [8];
- 2 зависимость, построенная в соответствии с правилом Вегарда [9];
- 3 зависимость, полученная в настоящей работе при расчетах на основе структурной модели атомов

Видно, что расчетная кривая (3) весьма близка к экспериментальной кривой (1). И обе они принципиально отличаются от зависимости, построенной по правилу Вегарда [9], в соответствии с которым зависимость параметра кристаллической решетки от концентрации неограниченного твердого раствора является линейной, линия 2.

В книге [15] отмечается, что у сплавов AuCu в отличие от сплавов AuAg экспериментально определенные параметры ГЦК решетки и, следовательно, кратчайшие межатомные расстояния (d_1) больше тех, которые определяются по правилу Вегарда. По Вегарду, например, в сплаве $Au_{50}Cu_{50}$.

 $d_1 = (0.2882 + 0.2556)/2 = 0.2719 \text{ nm}.$

Расчет для сплава $Au_{50}Cu_{50}$,, проведенный по той же схеме, что и для сплавов AuAg, дал результат 0.2760 nm. Эта величина больше, чем та, которая получается в соответствии с расчетом по правилу Вегарда. Но она хорошо согласуется с экспериментальными данными.

Вывод

При использовании структурной модели атомов (СтМА) – модели взаимно проникающих атомов прогнозирование и расчет взаимного расположения атомов в конденсированных твердых веществах может быть осуществлено методами геометрии, электростатики и классической механики.

СПИСОК ЛИТЕРАТУРЫ:

- 1. Зоркий П.М. Структурная химия на рубеже веков // Российский химический журнал. 2001. T.XLV. №2. С. 3-10.
- 2. Бери Р.С., Смирнов Б.М. Фазовые переходы и сопутствующие явления в простых системах связанных атомов // УФН. 2005. Т.175. №4. С. 376-411.
- 3. Титоров Д.Б Формирование плоских и пространственных структур из сферических тел с взаимопроникающими оболочками // Кристаллография. 2001. №1. С. 25-27.
- 4. Титоров Д.Б. Моделирование кристаллических структур из сферических тел с взаим-

- но проникающими оболочками // Поверхность. 2003. №6. С. 93-98.
- 5. Титоров Д.Б. Структурная модель атомов в материаловедении. Межатомные силы // Фундаментальные проблемы современного материаловедения. Барнаул, 2007.
- Титоров Д.Б. Формирование структуры алмаза, графита и фуллерена из модельных взаимно проникающих атомов // Шестая международная конференция "Рост кристаллов и тепломассоперенос" ICSC-2005. Сборник трудов (под редакцией В.П. Гинкина). Обнинск, 2005. Т.3. С. 646-655.
- 7. Титоров Д.Б. Моделирование формирования возможных структурных форм цементита // ФММ. 2007. Т.103. №4. С. 413-419.
- 8. Pearson W.B. A handbook of lattice spacings and structures of metals and alloys // London. 1958. International Series of monographs on METAL PHYSICS and PHYSICAL METALLURGY. P. 289 (Sachs and Weerts1930; Hund and Tragner 1952).
- 9. Физическое металловедение. Редакторы Кан У.Р., Хаазен П. М.: Металлургия, 1987. Т.1. С. 510-511.
- 10. Смитлз К. Д. Металлы. Справочник. М.: Металлургия, 1980. 447 с.
- 11. Бернштейн Л.М., Рахштадт А.Г. Металловедение и термическая обработка стали. Справочник. Т.1. Кн.2. М.: Металлургия, 1991. 462 с.
- 12. Блейкмор Дж. Физика твердого тела. М.: Мир, 1988. 608 с.
- 13. Жданов Г.С. Физика твердого тела. М.: Изд-во Московского университета, 1962. 502 с.
- 14. Уэрт Ч., Томсон Р. Физика твердого тела. М.: Мир, 1969. 558 с.
- 15. Штейнберг С.С. Металловедение. Свердловск, 1961. 598 с.