ОПТИЧЕСКИЕ СВОЙСТВА LilnTe2

Ю.М. Басалаев, Ю.Н. Журавлев, Е.Б. Китова, А.С. Поплавной

Кемеровский государственный университет, г. Кемерово, Россия

Халькогениды LiB 111 C $^{V1}_2$ (B= AI, In, Ga, C=S, Se, Te) являются новыми материалами с широким диапазоном прозрачности, которые находят применение в нелинейной оптике. Эти кристаллы, являясь изоэлектронными аналогами кристаллов из семейства халькопирита ABC $_2$, по своим оптическим свойствам не уступают, а по отдельным параметрам превосходят тройные соединения ABC $_2$ со структурой халькопирита.

Среди соединений LiB 111 C $^{V1}_2$, кристаллизующихся в структуру халькопирита (пространственная группа D^{12}_{2d}), кристаллы LiInTe $_2$ (LIT) обладают высокой стехиометрией и синтезированы более двадцати лет назад [1,2]. Однако до недавнего времени [3,4] их получение было затруднено по технологическим причинам, связанным в частности с высокой активностью лития.

Кристаллографические данные LIT полученные в работах [1,2] находятся в удовлетворительном согласии между собой. Авторам [1] удалось получить устойчивые и химически чистые соединения LIT, которые кристаллизовались в структуру халькопирита с параметрами решетки a=6.419(2) A^0 и c=12.486(3) A^0 . Анализ полиморфных превращений LIT [1,2] показал, что структура халькопирита сохраняется в них до температуры плавления (935±5 K). Характерное для структуры халькопирита смещение анионов представлено в работе [2], где посредством рентгеноструктурного анализа для атома Те установлены координаты (0.2441, 0.2500, 0.1250) в единицах а и с.

Обзор публикаций показывает, что соединения данного типа мало изучены, особенно теоретически.

Целью настоящей работы является исследование оптических свойств соединения LIT на основе его электронного строения. Для этого в рамках теории функционала локальной электронной плотности выполнены первопринципные вычисления зонной структуры, которые позволяют найти разрешенные, запрещенные, прямые и непрямые переходы из валентной зоны в зону проводимости и установить их природу с учетом соответствующей поляризации.

Вычисление зонной структуры и плотности состояний выполнено на основе традиционной методики, которая подробно изложена 16

в [5]. Процедура самосогласования ограничивалась сходимостью вычислений по полной энергии не хуже 0.001 а.е. В расчетах использованы BHS-псевдопотенциалы и базис из псевдоатомных ${\rm sp}^3{\rm d}^5$ -орбиталей, которые разлагались в ряд по плоским волнам (~2500).

Полученные в результате решения уравнения Кона-Шема зонный спектр и кристаллические орбитали служили основой для вычисления плотности электронных состояний N(E), комбинированной плотности состояний I, и ряда оптических функций: мнимой (ϵ_2) и вещественной (ϵ_1) частей комплексной диэлектрической проницаемости, коэффициентов отражения (R) и поглощения (M), а также параметра характеристических потерь электронов (S).

Измерения фундаментального края поглощения, выполненные в [4], позволили получить для LIT при комнатной температуре значение ширины запрещенной зоны E_g =1.5 эВ. Полученные нами расчетные значения E_g =2.01 эВ (прямой переход в точке Γ), а также E_g =1.83 эВ (непрямой переход из вершины валентной зоны в точку T зоны проводимости), хорошо согласуются с имеющимися экспериментальными данными.

Значения энергий прямых и непрямых, а также запрещенных переходов позволяют интерпретировать данные оптических спектров и установить, в частности, природу фундаментального края поглощения.

Рассмотрим особенности фундаментальных оптических функций соединения LIT на примере мнимой части комплексной диэлектрической проницаемости $\epsilon_2(E)$, график которой представленной на рис. 1.

На рис.1, наряду с результатами расчета полной функции $\epsilon_2(E)$ соединения LIT представлены графики для продольной (E||c) и поперечной ($E^\perp c$) ориентации вектора электрического поля E относительно тетрагональной оси кристалла c.

Из расчета функции $\epsilon_2(E)$ следует, что для халькогенидов LIT график содержит три структурированные полосы энергии, которые условно можно разбить на интервалы 1-10, 10-20 и 20-25 эВ. Далее график монотонно убывает. Анализ фундаментальных оптических функций соединения LIT показывают, что наиболее интенсивные полосы оптиче-

ПОЛЗУНОВСКИЙ АЛЬМАНАХ №1-2 2007

ских спектров сосредоточены в интервале от 0 до 10 эВ. В более высокоэнергетической области наблюдаются менее интенсивные структуры.

В области \sim 2.00 эВ имеется плечо, происхождение которого объясняется наличием прямых разрешенных переходов из вершины валентной зоны на нижние энергетические уровни, расположенные вблизи дна зоны проводимости. Близкое расположение глобальных и локальных минимумов зоны проводимости в точках Γ и Γ означает, что к этим переходам следует добавить непрямые переходы. Запрещенные по правилам отбора переходы маловероятны, но дают свой вклад в интегральные оптические функции кристаллов. То есть происхождение структурных особенностей на графиках $\epsilon_2(E)$ соединения LIT имеет сложную природу

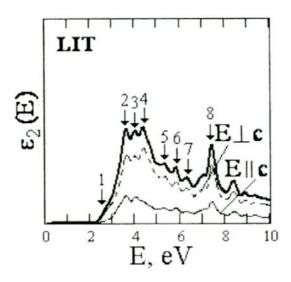


Рисунок 1 – График $\varepsilon_2(E)$ соединения LIT.

Для поляризации Е $^{\perp}$ с край графика диэлектрической функции (структура 1) соответствует прямым переходам в центре зоны Бриллюэна $\Gamma_5(15,16) \rightarrow \Gamma_3(17)$. Сюда же дают вклад непрямые переходы $\Gamma_5(15,16) \rightarrow \Gamma_{(1+2)}(17,18)$, а также запрещенные переходы $\Gamma_4(14) \rightarrow \Gamma_3(17)$. Три пика в области 3-5 эВ (структуры 2-4) обусловлены переходами в точках Γ , Γ и Γ :

 $\begin{array}{lll} \Gamma_5(15,16) \!\!\to\!\! \Gamma_2(18), & \Gamma_1(19); & \Gamma_5(12,13) \!\!\to\!\! \Gamma_3(17); \\ \Gamma_{(3+4)}(15,16), & T_{(1+2)}(13,14) \!\!\to\!\! T_5(19,20); \\ \Gamma_5(11,12) \!\!\to\!\! T_{(1+2)}(17,18); & N_1(15,16), & N_1(13,14), \\ N_1(11,12), \!\!\to\!\! N_1(17,18). \end{array}$

Реально эти пики имеют более сложное происхождение, обусловленное сериями не только прямых, но и непрямых, а также за-

прещенных переходов в точках Г, Т, N и Р. Очевидно, что структуры 5 и выше имеют еще более сложную интерпретацию, поскольку к переходам в точках высокой симметрии добавляются переходы в менее симметричных точках, а также множество непрямых и запрещенных переходов.

Край диэлектрической функции $\varepsilon_2(E)$ соединения LIT при поляризации Е || с (структура 1) обусловлен запрещенными переходами в центре зоны Бриллюэна халькопирита с уровня энергии валентной зоны Г₄(14), отделенного от вершины валентной зоны за счет кристаллического расщепления, на нижний энергетический уровень зоны проводимости $\Gamma_3(17)$, начиная с 1.85 эВ. Затем реализуются структуры 2-4 за счет разрешенных переходов $T_{(3+4)}(15,16) \rightarrow T_{(1+2)}(17,18)$ и переходов $N_1(15,16) \rightarrow N_1(17,18)$, к которым примешиваются запрещенные переходы $\Gamma_4(14) \to \Gamma_1(18)$. Интерпретация последующих структур возможна, но затруднена наличием большого числа непрямых и запрещенных переходов.

Такой сложный состав междузонных переходов, начиная с самых первых структур на графиках $\epsilon_2(E)$, является характерной особенностью рассматриваемого соединения LIT. Это обусловлено спецификой расположения энергетических уровней вблизи вершины валентной зоны и дна зоны проводимости LIT. Именно поэтому затруднена интерпретация оптических спектров, полученных опытным путем [3,4].

На рис. 2 представлен график вещественной части комплексной диэлектрической проницаемости $\epsilon_1(E)$, который также как и график мнимой части диэлектрической проницаемости $\epsilon_2(E)$ содержит информацию об оптических особенностях кристалла. Основные структуры этих функций в интервале энергий от 0 до 10 эВ могут быть сопоставлены между собой. Как видно из сопоставления графиков $\epsilon_1(E)$ и $\epsilon_2(E)$, пикам $\epsilon_2(E)$ соответствуют минимумы $\epsilon_1(E)$, природа которых может быть интерпретирована на языке межзонных переходов обсуждавшихся ранее. Для поляризации $E \parallel c$

области 6 эВ на графике $\epsilon_1(E)$ имеется характерная особенность в виде минимума, сопоставимого по величине с минимумом в области 4 эВ.

Теоретическое исследование электронного строения и оптических свойств LIT позволило установить характерные особенности присущие данному соединению, что является важным для изучения физико-

химических свойств новой группы Liсодержащих соединений со структурой халькопирита, которые являются весьма перспективными для применения в нелинейной оптике.

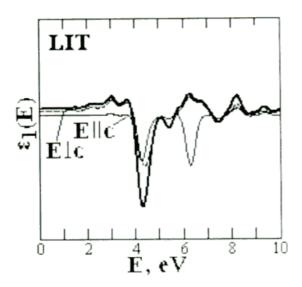


Рисунок 2 – График $\varepsilon_1(E)$ соединения LIT.

Показатели преломления и поглощения кристалла, с одной стороны, вещественная часть $\epsilon_1(E)$ и мнимая часть $\epsilon_2(E)$ комплексной диэлектрической проницаемости - с другой, являются равноценными по своей общности оптическими константами вещества, характеризующими взаимодействие электромагнитной волны и поглощающей среды.

Результаты, представленные в настоящей работе, показывают, что особенности поляризованных спектров кристаллов,

имеющих сложную структуру и состав, могут быть интерпретированы в рамках одноэлектронной теории на языке прямых междузонных переходов. Установленная природа структурных особенностей оптических спектров может служить основой для интерпретации экспериментальных спектров этих кристаллов, например, поглощения и отражения.

СПИСОК ЛИТЕРАТУРЫ:

- Kiihn G., Schumann B., Oppermann D., Neumann H., Sobotta H. Preparation, Structure, and Infrared Lattice Vibrations of LilnTe₂. // Z. Anorg. Allg. Chem. 1985, V.531, N12, P. 61-66.
- 2. Honle W., Kuhn G., Neumann H. Die KristallStruktur von Lim Te_2 . // Z. Anorg. Allg. Chem. 1986. V.532, N1, P. 150-156.
- 3. Isaenko L., Yelisseyev A., Lobanov S., etc. Growth and properties of LiGaX₂ (X=S,Se,Te) single crystals for nonlinear optical applications in the mid-IR// Cryst. Res. Technol. 2003. V.38. N 3-5. P. 379-387.
- 4. Isaenko L., Krinitsin P., Vedenyapin V., etc. LiGaTe₂: a new highly nonlinear chalcopyrite optical crystal for the mid-IR//Cryst. Growth. 2005. V.5. N 4. P. 1325-1329.
- Журавлев Ю.Н., Басалаев Ю.М., Поплавной А.С. Зонная структура щелочногалоидных кристаллов. І. Валентные зоны и химическая связь; ІІ. Зоны проводимости и оптические свойства // Изв. Вузов. Физика. 2000. № 3. С. 96.