СОРБЦИОННАЯ СПОСОБНОСТЬ И ФИЗИКО-ТЕХНОЛОГИЧЕСКИЕ СВОЙСТВА ПЕРСПЕКТИВНЫХ СОРТОВ ЯЧМЕНЯ АЛТАЙСКОГО КРАЯ, ВЫРАЩЕННЫХ НА ФОНАХ С ТЯЖЕЛЫМИ МЕТАЛЛАМИ

В.С. Иунихина

Международная Промышленная Академия, г. Москва Л.Е. Мелешкина, М.А. Вайтанис

Алтайский государственный технический университет им. И.И. Ползунова, г. Барнаул Л.И. Кострова

Алтайский научно-исследовательский институт сельского хозяйства, г. Барнаул

Проблема обеспечения качества и безопасности продовольствия является на сегодняшний день одной из острейших. По данным Института питания РАМН, в последние годы 3 % проб продовольственного сырья и продуктов питания в среднем по России не отвечают гигиеническим нормативам по содержанию тяжелых металлов. На некоторых территориях, в том числе и в Алтайском крае отмечается превышение средних показателей по России [1]. Это связано как с техногенным загрязнением природной среды, так и с недостаточной агротехнической культурой, нарушениями действующих норм и правил при производстве продуктов. Чтобы избежать негативных последствий от потребления загрязненной продукции, необходим санитарногигиенический мониторинг всего комплекса «производство-переработка-хранение-продажа пищевых продуктов», начальным и наиболее опасным звеном которого, конечно же, является производство сырья.

Содержание тяжелых металлов в зерновом сырье, выращенном в пределах одной и той же почвенно-климатической зоны, может колебаться в зависимости от вида и сорта растений, сроков уборки, наличия промышленных объектов в зоне производства зерна. применения удобрений, ядохимикатов и других причин. Известно, что оптимальный уровень содержания тяжелых металлов в почве может обеспечить выращивание экологически чистой продукции. В то же время, различные сортообразцы зерновых культур отличаются по степени накопления токсичных элементов. В этой связи, выведение сортов зерновых культур, устойчивых к сорбции токсичных элементов и обладающих хорошими технологическими свойствами, является важной задачей, а проведение исследований в этой области весьма актуально.

Для проведения исследований перед посевом различных сортов ячменя в почвы вносили тяжелые металлы (свинец, кадмий, никель) в виде уксусно-кислых солей.

Кадмий и свинец являются одними из наиболее опасных токсикантов. Период полувыведения кадмия из организма человека составляет более 10 лет, а полупериод биологического распада свинца — около 5 лет, поэтому даже следам этих элементов при систематическом попадании в организм человека необходимо уделять самое серьезное внимание.

Кроме того, в России и СНГ при наличии показаний, в пищевых продуктах также контролируется содержание никеля, суточная норма поступления которого в организм человека составляет 0,3-0,6 мг, а при избытке этого элемента наблюдается рак органов дыхания и дерматиты [2].

Возделывание ячменя проводили на опытных делянках Алтайского научно-исследовательского института сельского хозяйства. Полевые опыты проводили по схеме: контроль, кадмий, свинец, никель. Были исследованы следующие сорта ячменя: Обской, Омский-80, Одесский-100, Зазерский-85, Омский-86. Таким образом, исследовано 20 образцов. Содержание токсичных элементов определяли в посевном материала и в зерне ячменя инверсионно-вольтамперометрическими методами по ГОСТ 30178-97, ГОСТ Р 51301-99.

Проводили сравнительную оценку физико-технологических свойств образцов ячменя, а также сравнивали содержание токсичных элементов в исследуемых образцах с предельно допустимыми концентрациями, установленные СанПиН 2.3.2.1078 — 01 для зерновых культур на следующем уровне: свинец — 0,5 мг/кг; кадмий — 0,1 мг/кг.

Данные по накоплению токсичных элементов в различных сортах представлены в таблице 1.

Необходимо отметить, что содержание свинца во всех контрольных образцах, кроме сорта «Одесский-100», превышает требования санитарных правил. Как известно, в роли токсикантов окружающей среды выступают прежде всего алкильные соединения свинца, такие как тетраэтилсвинец, которые добавляют к автобензину в качестве антидетонатора, и, если нет непосредственного контакта с неорганическим свинцом, 75 % этого элемента попадает в растительное сырье из воздуха [2].

Содержание кадмия в контрольных образцах находится ниже допустимого уровня. Наибольшей сорбционной способностью по отношению к кадмию обладают сорта «Обской» и «Одесский-100», содержание кадмия в которых возросло в 5,4 и 3,8 раза соответственно, что очевидно, связано с различным содержанием белка в исследуемых сортах. Как известно, растения 70 % кадмия поглощают из почвы и лишь 30 % — из воздуха. Причем, сорбционная способность обусловлена наличием карбоксильных и гидроксильных групп [3] и возрастает с увеличением содержания аминокислот, органических кислот и белков.

Таблица 1 – Содержание токсичных элементов в зерне ячменя

Cont	Содержани	Содержание токсичных элементов, мг/кг				
Сорт	Кадмий	Свинец	Никель			
Обской						
контроль	0,05	0,81	0,29			
фоны с кадмием	0,27	-	-			
фоны со свинцом	-	1,04	-			
фоны с никелем	-	-	1,10			
Омский-80						
контроль	0,03	0,63	0,68			
фоны с кадмием	0,08	-	-			
фоны со свинцом	-	0,72	-			
фоны с никелем	-	-	1,37			
Одесский-100						
контроль	0,08	0,45	0,51			
фоны с кадмием	0,31	-	-			
фоны со свинцом	-	0,89	-			
фоны с никелем	-	-	1,21			
Зазерский-85						
контроль	0,06	0,62	0,41			
фоны с кадмием	0,09	-	-			
фоны со свинцом	-	1,69	-			
фоны с никелем	-	-	1,37			
Омский-86						
контроль	0,08	0,65	0,35			
фоны с кадмием	0,18	-	-			
фоны со свинцом	-	1,09	-			
фоны с никелем	-	-	1,22			

Адсорбция свинца наиболее значима зерном сорта «Одесский-100» (в 2 раза) и «Зазерский-85» (в 1,7 раза). Зерно всех исследованных сортов почти в равной степени сорбирует никель, который увеличился в 2,1-3,8 раза для сорта «Омский-80» и «Обской» соответственно.

Для исследования физико-технологических свойств ячменя, выращенного на фонах с тяжелыми металлами, оценивали линейные размеры, форму и цвет зерна ячменя, массу 1000 зерен, влажность, пленчатость, крупность, выравненность и стекловидность зерна ячменя.

СОРБЦИОННАЯ СПОСОБНОСТЬ И ФИЗИКО-ТЕХНОЛОГИЧЕСКИЕ СВОЙСТВА ПЕРСПЕКТИВНЫХ СОРТОВ ЯЧМЕНЯ АЛТАЙСКОГО КРАЯ, ВЫРАЩЕННЫХ НА ФОНАХ С ТЯЖЕЛЫМИ МЕТАЛЛАМИ

Определение линейных размеров зерновок показало, что размеры зерновок контрольных образцов всех сортов колебались в следующих пределах: длина — от 9,14 до 10,40 мм; ширина — от 3,44 до 3,82 мм; толщина — от 2, 64 до 2,94 мм. Наличие тяжелых металлов не оказало существенного влияния на линейные размеры образцов, размеры зерновок всех образцов колебались в указанных пределах.

Форма зерна ячменя, выращенного на фонах с тяжелыми металлами, не изменяется по сравнению с контролем. Цвет контрольных образцов колеблется от темножелтого до светло-желтого. Отмечено посветление пленок у сортов «Одесский-100» и «Зазерский-85», выращенных на фоне кадмия. Потемнение наблюдалось у сорта «Обской», выращенного на фонах с никелем и у сорта «Одесский-100», выращенного на фонах со свинцом. В остальных образцах цвет не изменялся.

Массу 1000 зерен оценивали в соответствии с ГОСТ 10842-89 «Зерно зерновых и бобовых культур и семена масличных культур. Метод определения массы 1000

зерен или 1000 семян». Масса 1000 зерен контрольных образцов составила: сорт «Обской» – 46,15 г; «Омский-80» – 52,50 г; «Одесский-100» - 50,70 г; «Зазерский-85» -47.00 г; «Омский-86» – 47.15 г. Интересен тот факт, что масса 1000 зерен образцов с кадмием меньше масс всех других образцов независимо от сорта в среднем на 3 грамма. Внесение в почвы никеля и свинца приводит к снижению массы 1000 зерен на 1-2 г по сравнению с контрольными образцами. Следовательно, наличие кадмия в почвах приводит к ухудшению физических, а следовательно, и технологических свойств.

Внесение тяжелых элементов в почвы оказало наиболее существенное влияние на крупность и выравненность зерна ячменя (таблица 2).

Крупность определяли путем просеивания через набор штампованных сит с отверстиями (мм): 2,8x20; 2,5x20; 2,2x20.

Выравненность определяли как сумму сходов двух смежных сит, выраженную в процентах.

Таблица 2 – Характеристика крупности и выравненности зерна ячменя

Сорт	Крупность зерна, % сход с сит			Содержание мелкого зерна	Вырав-
	Обской				
контроль	23,3	51,3	19,9	5,6	74,5
фоны с кадмием	19,3	51,3	21,1	8,3	72,4
фоны со свинцом	26,1	48,6	20,7	4,6	74,7
фоны с никелем	24,8	49,2	19,1	6,9	74,0
Омский-80					
контроль	30,2	43,1	18,5	8,2	73,3
фоны с кадмием	27,6	46,5	19,0	6,9	74,1
фоны со свинцом	46,8	36,8	11,4	5,0	86,3
фоны с никелем	37,4	40,9	15,9	5,8	78,3
Одесский-100					
контроль	51,9	33,5	12,3	2,3	85,4
фоны с кадмием	45,1	34,4	15,6	4,9	79,5
фоны со свинцом	60,1	28,8	9,2	1,9	88,9
фоны с никелем	51,4	35,3	11,2	2,1	86,7
Зазерский-85					
контроль	48,8	36,7	11,2	3,3	85,5
фоны с кадмием	44,4	32,8	17,4	5,0	77,2
фоны со свинцом	63,3	27,1	7,5	2,1	90,4
фоны с никелем	47,7	34,5	13,6	4,2	82,2
Омский-86					
контроль	18,7	51,1	20,4	9,8	71,5
фоны с кадмием	34,4	48,8	11,9	4,9	83,2
фоны со свинцом	39,7	44,8	12,4	3,1	84,5
фоны с никелем	34,7	47,3	14,0	4,0	82,0

Анализ полученных данных показал, что наибольшей крупностью (сход сита 2,8х20 мм) обладают контрольные образцы сортов «Одесский-100» и «Зазерский-85». Остальные сорта имеют среднюю крупность, так как наибольшее количество зерен было получено сходом с сита 2,5х20 мм.

По содержанию мелкого зерна требованиям ГОСТ 258672-90 «Ячмень. Требования при заготовках и поставках» соответствуют лишь сорта «Одесский-100» и «Зазерский-85», во всех остальных сортах содержание мелкого зерна превышает норму, установленную на уровне 5 %.

Все исследуемые сорта имеют хорошую выравненность, она наибольшая у сортов «Одесский-100» и «Зазерский-85» и составляет 88,9 % и 90,4 %, несколько меньше выравненность у остальных сортов. Внесение в почвы тяжелых металлов вносит существенные изменения в результаты. Установлено, что зерно, выращенное на почвах со свинцом, значительно крупнее контрольных образцов. Содержание схода с сита 2,8х20 мм возрастает на 8,2-21,0 % по сравнению с контрольными образцами, выравненность этих образцов выше, чем у других. Обратное действие оказывает на зерно кадмий. Содержание крупного зерна в образцах, выращенных на почвах с кадмием, снижается на 3-6 % относительно контрольных образцов. Исключение составляет сорт «Омский-86», у которого содержание крупного зерна возрастает независимо от внесенного в почву металла. Для сортов «Омский-80» и «Омский-86» замечено снижение содержания мелкого зерна по сравнению с контролем, в других сортах четкой зависимости не прослеживается.

Пленчатость контрольных образцов составила от 7,43 % для сорта «Омский» до 9,8 % для сорта «Обской». Присутствие тяжелых металлов в почвах не приводит к значительному изменению пленчатости практически всех образцов. Зафиксирован рост пленчатости на 1,3 % для сортов «Омский-80» (контроль - 8,1 %), выращенного на фо-

нах с кадмием, и «Омский-86», выращенного на фонах со свинцом.

Влажность контрольных образцов колеблется на уровне 10-11 % и внесение в почвы тяжелых металлов не оказывает влияние на влажность.

Стекловидность зерна определяли по ГОСТ 10987-76 «Зерно. Методы определения стекловидности». Контрольные образцы имеют следующую стекловидность:

«Обской» — 87 %, «Омский-80» — 75 %, «Одесский» — 77 %, «Зазерский-85» — 81 %, «Омский-86» — 82 %. Отмечен рост стекловидности сорта «Омский-80» и снижение стекловидности сорта «Зазерский-85» на 8 % на фонах с кадмием. Снижение стекловидности сорта «Зазерский-85», выращенного с внесением свинца составило 11 %. Для остальных образцов существенных отклонений от стекловидности контрольных образцов не отмечено.

Таким образом, зерно ячменя селекционных форм «Обской», «Одесский-100», «Зазерский-85» показало очень высокую сорбционную способность по отношению к свинцу, никелю и кадмию, а влияние этих металлов на формирование физических и технологических свойств зерна весьма значительное. Проведенные исследования должны быть учтены при выборе посевного материала и определении районов произрастания зерна ячменя.

СПИСОК ЛИТЕРАТУРЫ

- 1. Безопасность России. Правовые, социальноэкономические и научно-технические аспекты. Продовольственная безопасность. Раздел 2. – М.: МГФ «Знание», 2001. – 480 с.
- 2. Донченко Л.В., Надыкта В.Д. Безопасность пищевой продукции. М.: Пищепромиздат, 2001. 520 с.
- Лаврушина Ю.А., Филичкина В.А., Иванов А.А. О механизме удерживания тяжелых металлов некоторыми пищевыми продуктами // Хранение и переработка сельхозсырья, 2000. – №7. – С.10-12