СВОЙСТВА СПЛАВА AI - 15 % Si В ЗАВИСИМОСТИ ОТ СПОСОБА РАФИНИРОВАНИЯ

В.Б. Деев, Е.А. Куц

В работе было исследовано влияние различных способов обработки расплава на литейные и механические свойства заэвтектического силумина (15 масс. % Si), шихта для которого полностью состояла из низкосортных материалов: отходов, лома, возврата сплавов соответствующего состава. Все плавки проводили в печи ИСТ-0,06. Выдержка расплава после рафинирования составляла около 20 минут. Температура заливки во всех экспериментах составляла 730-740 Свойства сплава AI – 15 масс. % Si в зависимости от способа обработки расплава в экспериментальных плавках приведены в таблидетаблицы следует, что эффект рафинирования расплава AI - 15 масс. % Si смеся-

ми солей достаточно умеренный в отношении прироста механических свойств и жидкотекучести по сравнению с другими способами обработки расплава.

Наибольший эффект дает обработка расплава электрическим током. По сравнению с нерафинированным сплавом предел прочности повышается в 1,14 раза, относительное удличение – в 2.5 раза, жил-

относительное удлинение – в 2,5 раза, жидкотекучесть – на 14 %.

Эффект рафинирования гексахлорэтаном и продувкой аргоном примерно одинаков, однако жидкотекучесть расплава, обработанного аргоном, выше.

Обработка расплава ТВО эффективнее при перегреве до 1100-1120 $^{\circ}$ C, чем при перегреве до 940-950 $^{\circ}$ C.

Таблица 1

таолица т				
	СВОЙСТВА СПЛАВА (средние данные по 5 образцам каждого эксперимента)			
СПОСОБ ОБРАБОТКИ РАСПЛАВА AI-15 %Si	Жид- котеку- честь, мм	Порис- тость, балл	σ _в , МПа	δ, %
Исходный сплав (не рафинирован)	604	5	117	1,23
Обработка смесью: 45 %NaCl, 50 % KCl, 5%Na ₃ AlF ₆	633	4-5	121	1,51
Рафинирование C ₂ Cl ₆ (гекса- хлорэтаном)	658	2-3	141	2,56
Рафинирование смесью: 50 % NaCl, 30 % NaF, 10 % Na ₃ AlF ₆ , 10 % KCl	646	4	126	1,93
Электрический ток (15 А)	693	2	153	3,08
Продувка аргоном 8-10 ми- нут	673	2-3	143	2,69
ТВО (перегрев до 940-950 °C и выдержка 15-20 минут), фильтрация через стеклоткань	662	3-4	135	2,35
ТВО (перегрев до 1100-1120 °C и выдержка 15-20 минут), фильтрация через стеклоткань	670	2-3	140	2,62