На правах рукописи

Ситников Максим Николаевич

ВЛИЯНИЕ ЭЛЕКТРОННОГО ДОПИРОВАНИЯ НА МАГНИТНЫЕ И ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА ПОЛУПРОВОДНИКОВ С РЕДКОЗЕМЕЛЬНЫМИ ЭЛЕМЕНТАМИ Re_xMn_{1-x}S (Re = Ce, Gd, Ho)

01.04.07 – физика конденсированного состояния

Автореферат

диссертации на соискание ученой степени кандидата физико-математических наук

Работа выполнена в ФГБОУ ВО «Сибирский государственный аэрокосмический университет им. академика М.Ф. Решетнева»

Научный Аплеснин Сергей Степанович, доктор физикоруководитель: математических наук, профессор.

Официальные Батдалов Ахмед Батдалович, доктор физикооппоненты: математических наук, старший научный сотрудник, заведующий лабораторией физики низких температур и сверхпроводимости федерального государственного бюджетного учреждения науки «Институт физики им. Х.И. Амирханова» Дагестанского научного центра РАН.

> Рудер Давыд Давыдович, физикокандидат математических наук, доцент. доцент кафедры прикладной физики, электроники и информационной безопасности федерального государственного бюджетного образовательного учреждения высшего образования «Алтайский государственный университет».

Ведущая ФГАОУ ВО «Сибирский федеральный университет», г. Красноярск. организация:

Защита состоится <u>«30 »</u> июня 2016 г. в 11.00 часов на заседании диссертационного совета Д 212.004.04 при Алтайском государственном техническом университете им. И.И. Ползунова по адресу: 656038, г. Барнаул, пр. Ленина, 46. e-mail: veronika 65@mail.ru

С диссертацией можно ознакомиться в научной библиотеке и на сайте Алтайского государственного технического университета ИМ. И.И. Ползунова. http://www.altstu.ru/structure/unit/odia/scienceevent/2813/

Автореферат разослан « » 2016 г. Ученый секретарь диссертационного *Прини* Романенко В.В. совета, кандидат физико-математических наук, доцент

Примечание: отзывы на автореферат, заверенные гербовой печатью организаций, просим присылать в 2-х экз. на адрес университета и e-mail: veronika 65@mail.ru

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Поиск и исследование новых Актуальность темы. веществ, обнаруживающих свойства мультиферроиков и сильную взаимосвязь между магнитной, электронной и упругой подсистемами, проявляющуюся в виде магнитоэлектрических и магниторезистивных эффектов в области комнатных температур, представляет интерес, как с фундаментальной, так и с прикладной точки зрения. Это позволит создавать эффективные сенсоры и элементную базу в микроэлектронике, в частности в В используются спинтронике, которой преимущества, как магнитной быстродействующих энергонезависимой памяти, так И электрических систем обработки информации. В спинтронике ДЛЯ преобразования электрического сигнала используется не только зарядовая степень свободы электрона, но также и спин, что позволяет создавать принципиально новые спинтронные устройства. У электрона имеются орбитальные степени свободы, воздействуя на которые также можно регулировать транспортными и диэлектрическими характеристиками в магнитном поле.

В качестве таких материалов можно использовать полупроводники с неоднородными электронными состояниями И с орбитальным упорядочением электронов. Перенос носителей заряда осуществляется по определенному типу орбиталей, положение которых относительно химпотенциала можно варьировать электрическими, магнитными полями и Управлять упругими напряжениями. электронной структурой И электрическим током в системах с орбитально-зарядовым упорядочением можно упругими напряжениями на основе пьезоэффекта. Магнитоэлектрические материалы использоваться могут В энергонезависимой магнитной памяти, в СВЧ приборах.

Перспективными материалами для решения этих задач служат магнитные полупроводники на основе сульфида марганца $\text{Re}_{x}\text{Mn}_{1-x}\text{S}$ (Re= Ce, Gd, Ho) замещенные 4f- элементами. Замещение ионов марганца редкоземельными элементами приводит к электронномудопированию и к вырожденным t_{2g} -орбиталям, вырождение которых снимается сильными электронными корреляциями. Снятие вырождения в магнитном поле зависит от углового магнитного момента электрона. Особенно вблизи половинного заполнения орбиталей вероятность найти электрон на одной

3

орбитали зависит от типа решетки и орбитали. Орбитальный порядок может сопровождаться искажением решетки, Ян-Теллеровским искажением, вызванными связью между электронами и решеткой. Однако орбитально упорядоченное состояние может быть энергетически выгодным и без искажения решетки

порядка B результате, В отсутствие спинового гигантский магниторезистивный эффект может быть обусловлен орбитальным электронов на t_{2g}орбиталях, либо сильным спинупорядочением орбитальным взаимодействием, что связано с изменением подвижности В магнитном поле В парафазе. Магнитоэлектрическое электронов взаимодействие может быть обусловлено смещением аниона на интерфейсе ион марагнца- редкоземельный ион (Mn-Re) при орбитальном упорядочении, либо Ян-Теллеровской модой редкоземельного иона с одним электроном в 5d- оболочке или неоднородным распределением электронов вблизи границы раздела Mn-Re.

Поэтому актуально определение относительной роли этих эффектов, механизмов их взаимосвязи и создание методологии целенаправленного синтеза материалов с заданными свойствами.

Предметом исследования являются закономерности изменения магнитного момента, электросопротивления, диэлектрической проницаемости при электронном допировании, установление влияния магнитного поля на транспортные и диэлектрические свойства твердых растворов $Re_xMn_{1-x}S$ (Re = Ce, Gd, Ho), x<0.3 в зависимости от температуры и состава материала.

Объектом исследования являются поликристаллические твердые растворы $Ce_xMn_{1-x}S$ с концентрациями церия x=0.01, 0.03, 0.05, $Gd_xMn_{1-x}S$ с концентрациями редкоземельного иона гадолиния x=0.05, 0.1, 0.15 и 0.2 и $Ho_xMn_{1-x}Sc$ концентрациями гольмия x=0.01, 0.05, 0.1, 0.3, полученные путём кристаллизации из расплава с использованием индукционного нагрева и контролируемым снижением мощности на многовитковом индукторе.

Цель работы: изучить влияние электронного допирования на электросопротивление и диэлектрические свойства, установить смену типа проводимости и изменение магнитного момента в сульфидах марганца, при замещении марганца редкоземельными ионами в зависимости от ионного радиуса в твердых растворах $Re_xMn_{1-x}S$ (Re = Ce, Gd, Ho).

4

Для достижения поставленной цели необходимо было решить следующие задачи:

1. Исследовать поведение магнитного момента и восприимчивости в слабых и сильных магнитных полях в широком температурном диапазоне. Определить зависимость намагниченности от магнитного поля в полях до 9 Тл в интервале температур (4 – 300) К;

2. Исследовать транспортные, термоэлектрические свойства $Re_xMn_{1-x}S$ (Re = Ce, Gd, Ho), ($0 \le x \le 0.3$) без поля и в магнитном поле 8 кЭ в диапазоне температур от 80 К до 1000 К.

3. Исследовать комплексную диэлектрическую проницаемость $Re_xMn_{1-x}S$ (Re = Ce, Gd), ($0 \le x \le 0.2$) в зависимости от температуры, магнитного поля и концентрации. Установить температурные и концентрационные области с гигантским магнитоемкостным эффектом.

Методы исследования:

1. Определение парамагнитной температуры Кюри и Нееля, эффективного магнитного момента иона в твердых растворах Re_xMn_{1-x}S в зависимости от состава.

2. Измерение электросопротивления, Холловского сопротивления и термоэдс твердых растворов $Re_xMn_{1-x}S$ от температуры без поля и в магнитном поле.

3. Измерение электроемкости и тангенса угла потерь в твердых растворах Re_xMn_{1-x}S от температуры без поля и в магнитном поле.

4. Анализ магнитных характеристик в приближении молекулярного поля, диэлектрической проницаемости в модели Дебая и электросопротивления в модели с орбитальным упорядочением.

Научная новизна работы:

1. В установлении закономерности изменения эффективного магнитного момента и парамагнитной температуры Кюри в твердых растворах Re_xMn_{1-x}S (Re = Ce, Gd, Ho) при изменении концентрации редкоземельного элемента.

2. В определении закономерности изменения электросопротивления в зависимости от типа редкоземельного иона, состава в сульфидах Re_xMn_{1-x}S (Re = Ce, Gd, Ho), смены знака носителей тока, как по концентрации, так и по температуре.

3. В обнаружении уменьшения проводимости в магнитном поле и гигантского магниторезистивного эффекта в парамагнитной области при температурах выше комнатных в $Re_xMn_{1-x}S(Re = Ce, Gd)$.

4. В установлении закономерности изменения диэлектрической проницаемости и диэлектрических потерь в магнитном поле от температуры в широкой области температур 80 К – 500 К.

Основные положения, выносимые на защиту:

1. Обнаружена смена типа проводимости с полупроводникового на металлический и знака носителей тока с дырочного на электронный в твердых растворах Ho_xMn_{1-x}S при концентрации x= 0.3.

2. Установлена концентрационная зависимость эффективного магнитного момента и парамагнитной температуры Кюри в твердых растворах Ho_xMn_{1-x}S.

3. Обнаружен полупроводниковый тип проводимости в $Re_xMn_{1-x}S$ (Re = Ce, Gd, Ho) и область температур с кроссовером от туннельного к прыжковому типу проводимости для составов с X < 0.2.

4. Обнаружен рост электросопротивления твердого раствора $Re_xMn_{1-x}S$ (Re = Ce, Gd), (0.05 $\leq x \leq 0.2$) в магнитном поле, включая область высоких (выше комнатных) температур и найдена критическая температура, при которой проводимость не зависит от внешнего магнитного поля.

5. Обнаружено изменение диэлектрической проницаемости и диэлектрических потерь в магнитном поле в $Re_xMn_{1-x}S$ (Re = Ce, Gd).

Научная значимость работы:

Научную ценность составляет изменение эффективного магнитного момента, который не является аддитивной величиной магнитных моментов ионов марганца и редкоземельных ионов. Образование ферромагнитных обменных взаимодействий уменьшение И резкое парамагнитной температуры Кюри при электронном допировании, индуцирующем химическое фазовое расслоение. Локализация электронов на ионах марганца в окрестности редкоземельных ионов приводит к вырождению t_{2g}орбиталей, которое снимается в результате сильных электронных корреляций. Это приводит к корреляции орбитальных угловых моментов электронов и к зависимости транспортных и диэлектрических свойств от магнитного поля. Найдены максимумы в температурной зависимости диэлектрической проницаемости, изменение энергии активации И отклонение от закона Кюри-Вейсса при образовании орбитального упорядочения. Исследованы механизмы диэлектрических потерь И изменение проводимости в магнитном поле.

6

Практическая значимость работы:

Связана с обнаружением влияния магнитного поля на транспортные и диэлектрические характеристики выше температуры магнитного упорядочения, включая комнатные, что в перспективе можно использовать в качестве сенсоров, датчиков, устройств записи-считывания информации. Магнитоёмкость может найти применение при изготовлении СВЧ приборов. Магнитозависимые эффекты при комнатных температурах и в заданных частотных диапазонах перспективны для использования в спинтроники. Резкое устройствах изменение сопротивления В определенном интервале температур может являться основой создания датчиков температуры.

Достоверность результатов подтверждается согласием экспериментальных результатов, полученных при исследовании магнитных, электрических и структурных свойств различными методами и качественным согласием с теоретическими расчетами транспортных и магнитных характеристик твердых растворов Re_xMn_{1-x}S (Re = Ce, Gd, Ho).

Личный вклад автора заключается в проведении измерений транспортных и диэлектрических характеристик, обработке и интерпретации полученных результатов, подготовке их к публикации, участии в написании статей и докладов.

Апробация работы. Основные результаты исследований по теме были представлены И обсуждались на диссертации следующих симпозиумах, конференциях и совещаниях: Байкальская международная конференция «Магнитные материалы. Новые технологии». – Иркутск, 2012, 2014; Международная научная конференция «Решетневские чтения». - Красноярск, 2011, 2012, 2013, 2014, 2015; Всероссийская научнопрактическая конференция творческой молодежи «Актуальные проблемы авиации и космонавтики». – Красноярск, 2012, 2013, 2014; IEEE Сибирская Конференция Международная по управлению и связи «SIBCON-2011»; MoscowInternationalSymposiumonMagnetism «MISM». – 2011. 2014»; The 19 Москва, InternationalConferenceonMagnetismwithStronglyCorrelatedElectronSystem. Busan, Korea, 2012; АКТУАЛЬНЫЕ ПРОБЛЕМЫ ФИЗИКИ ТВЕРДОГО ТЕЛА, ФТТ-2011, 2013, Минск; ХХ УРАЛЬСКАЯ МЕЖДУНАРОДНАЯ ЗИМНЯЯ ШКОЛА ПО ФИЗИКЕ ПОЛУПРОВОДНИКОВ. Екатеринбург-Новоуральск, 2014; Российской конференции по физике полупроводников. Санкт-Петербург, 2014.

Работа поддержана грантами: РФФИ № 12-02-00125-а., РФФИ – Сибирь № 15-42-04099-р сибирь а.

Публикации. По теме диссертации опубликовано 17 работ, из них 3 в российских и 2 в международных журналах по списку ВАК 5 статей. Список публикаций приведен в конце автореферата.

Структура и объем диссертации. Диссертация состоит из введения, четырех глав основного текста, заключения. Объем диссертации 132 составляет страницы, включает 53 рисунка, 2 таблицы И библиографический список из 123 наименований.

Основное содержание работы

Во введении обоснована актуальность темы исследования, сформулированы цели исследования, показана научная новизна и практическая значимость результатов работы, представлена степень апробации, количество публикаций и структура диссертации.

Первая главаявляется обзорной. В ней анализируются магнитные, электрические и структурные свойства сульфидов церия, гольмия и гадолиния. Приводится электронная структура монохалькогенидовReS (Re=Ce, Gd, Ho). Анализируются типы орбитального упорядочения с частично заполненной t_{2g} оболочкой, с 3du 5dэлементами со структурой перовскита. Отмечается важность учета кулоновского взаимодействия между электронами на разныхорбиталяхдля образования орбитального [1]. Обсуждаются экспериментальные работы порядка И методы определения орбитального упорядочения. Детально рассмотрены механизмы магнитотранспортных явлений, как в магнитоупорядоченной области, так и в области высоких температур в отсутствие спинового порядка [2].

Рассмотрены исследования электрических методы И диэлектрическихсвойств $Re_xMn_{1-x}S(Re = Ce, Gd, Ho)$. Измерения удельного электросопротивления были проведены четырехзондовым методом на постоянном токе в интервале температур 77К - 1000 К в нулевом магнитном поле и в поле 8кЭ, точность измерений составляет 1.5%. Измерения диэлектрических свойств в данной работе проведены на анализаторе компонентов АМ-3028 в интервале температур 80К – 450К в нулевом магнитном поле и в поле 8 кЭ. Точность измерений составляет 0,1%.Статические магнитные измерения выполнены на вибрационном PPMC магнитометре установке, том числе магнитная И В

восприимчивостьна частотах 100 Гц, 1 кГц, 10 кГц. Погрешность результата измерения удельной намагниченности, отнесенной к массе измеряемого образца составляет $\Delta \sigma \pm 0,005 \text{ A} \cdot \text{m}^2 \cdot \text{кr}^{-1}$, погрешность измерения магнитной восприимчивости образца известной массы- $\Delta \chi \pm 1.10^{-11} \text{ m}^3 \cdot \text{кr}^{-1}$.

Вторая главапосвящена изучению механизма магнитоэлектрической связи в орбитально вырожденных электронных состояниях, полученных замещения ионов марганца ионами гадолиния путем В твердых растворахGd_xMn_{1-x}S. Синтезированные образцы $Gd_{x}Mn_{1-x}S$ имеют гранецентрированную кубическую решетку (ГЦК) типа NaCl. Измерение сопротивления было проведено четырехзондовым методом в магнитном поле $H = 8\kappa$ Э, направленном перпендикулярно направлению тока, для трех составов с x = 0.1, 0.15 и 0.2 в области температур 100К < T < 550К. В случае состава с x = 0.1 сопротивление слабо меняется с температурой до Т = 260 К, затем экспоненциально уменьшается с изменением энергии активации ΔE от 0.31 до 0.61 эВ при температуре T = 440 К (Рис.1). При дальнейшем нагревании (при T> 550К) сопротивление практически не зависит от температуры. В магнитном поле сопротивление увеличивается. Особенно резко возрастает при T> 270К. Величина оно магнитосопротивления, определенная как $\delta = [\rho(H) - \rho(0)]/\rho(0)$, имеет максимум при T = 400 K (Рис.1).

Рисунок 1. (а) - Удельное электросопротивление $Gd_{0,1}Mn_{0,9}S$ без магнитного поля (1) и в поле H = 8 кЭ (2). (b) - Температурные зависимости магнитосопротивления[ρ (H) — $\rho(0)$]/ $\rho(0)$: l - эксперимент,2 - теоретические расчеты функций (1.1) и (1.2) с параметрами $m_L^2 = 0.15$, $\lambda = 0.005$, $T_{c,B} = 400$ K, $T_c = 500$ K, $\Delta E = 0.3$ эВ. На вставке зависимость логарифма сопротивления от обратной температуры без магнитного поля. Погрешность составляет не более 1.5%.

В составе с x = 0.15 при переходе из магнитоупорядоченной фазы в парамагнитное состояние сопротивление возрастает на 50 %. В магнитном поле электросопротивление возрастает на 40 % в парамагнитном состоянии до температур 400 К.

Для концентраций, превышающих концентрацию протеканиях_{*c*} = 0.16 в твердом растворе $Gd_xMn_{1-x}S$, сопротивление меняется в пределах одного порядка в интервале температур 100 K< T < 500 K и имеет минимум при T = 325 K (рис. 2). В магнитном поле, сопротивление также возрастает, а минимум в его температурной зависимости смещается в сторону высоких температур доT = 380 K. Магнитосопротивление (вставка на Рис.2) меняет знак с ростом температуры с положительного на отрицательный при T = 320 K и исчезает при 475K.

Рисунок 2. (а) - Удельное электросопротивление $Gd_{0.2}Mn_{0.8}S6e_3$ магнитного поля (1) и в поле H = 8 кЭ (2). Вставка (b) - Температурная зависимостьмагнитосопротивления $\rho(H) - \rho(0) J/\rho(0)$ в магнитном поле 8 кЭ.

Магнитосопротивление также установлено из вольт-амперных характеристик, измеренных при комнатной температуре без поля и в магнитном поле H = 8 кЭ (рис.3). С ростом тока магнитосопротивление проходит через максимум и при токе в 1 мА и электрическом напряжении около 1 В резко уменьшается.

Рисунок 3. Зависимость тока от напряжения в магнитных полях H = 0 и 8 кЭдля составов с x=0.1 (a) и x=0.2 (b). Вставка-зависимость магнитосопротивления в магнитном поле H = 8 кЭ от электрического напряжения при комнатной температуре для x = 0.2.Погрешность составляет не более 0,5%.

Экспериментальные результаты объясняются в модели с орбитальным упорядочением электронов на ближайших ионах марганца в окрестности иона гадолиния. По аналогии со спиновыми системами, когда флуктуации спиновой плотности, описываемые ближним магнитным порядком. обусловливают движение края подвижности и рост сопротивления, используем ближний порядок в орбитальной подсистеме, который описывается корреляционными функциями орбитальных моментов и модифицирует ширину зоны проводимости, как [1-(L(0)L(r))]W. наопределенныхорбиталях Упорядочение электронов приводит К анизотропии интегралов перескока и к увеличению энергии активации от примесного уровня до дна зоны проводимости. При низких температурах орбитальные моменты кластеров ориентированы хаотично И коррелятор(L(0)L(r))стремится к нулю. При нагревании орбитальные моменты стремятся выстроиться по направлению магнитного поля, что приводит к росту величины (L(0)L(r)). Изменение сопротивления ρ в магнитном поле имеет вид

$$[\rho(H) - \rho(0)]/p(0) = \exp[(\langle L_H(0)L_H(r) \rangle - \langle L_0(0)L_0(r) \rangle) \Delta E/(k_B T)] - 1, (1.1)$$

 $\Gamma_{\text{де}}\langle L_H(0)L_H(r)\rangle, \langle L_0(0)L_0(r)\rangle\rangle$ орбитальные корреляторы -В поле без поля. Оценим корреляторы магнитном И модели В суперпарамагнетика, когда имеются внешнее магнитное поле Н и поле анизотропииН₄.

При случайном разбросе осей анизотропий в интервале углов 0 < $\gamma < \pi$ коррелятор орбитальных моментов выразим через орбитальную намагниченность кластера и угол между направлениями моментов:

$$\langle L_{H}(0)L_{H}(r)\rangle - \langle L_{0}(0)L_{0}(r)\rangle = (M_{L}^{0})^{2}\Delta(\theta) = m_{L}^{2}(1 - T/T_{c})^{0.6} \cdot \left(\sum_{i} \frac{1}{\sqrt{1 + \sin^{2}\gamma_{i}/\left[\frac{\lambda}{(1 - T/T_{c,B})^{2}} + \cos\gamma_{i}\right]^{2}}} - \frac{1}{\sqrt{1 + tg^{2}\gamma_{i}}}\right), \qquad (1.2)$$

где $\lambda = H/K$, K - константа анизотропии. В трехмерных анизотропных системах намагниченность в области перехода имеет вид $M = m_L(1 - T/T_c)^{\beta}$, где $\beta = 0.3$ -0.33. Поле анизотропии также имеет степенную температурную зависимость: $H_A = K(1-T/T_{c,B})^n$. Экспериментальные данные лучше описываются с показателем n = 2. Для x = 0.1экспериментальные данные по магнитосопротивлению удовлетворительно описываются функцией (1.1) и (1.2) со следующими параметрами: орбитальный момент кластера $m_L^2 = 0.15$, поле анизотропии $\lambda = 0.005$, температура блокировки кластеров с орбитальным упорядочением $T_{c,B} =$ 400 К, температура формирования ближнего орбитального порядка $T_c =$ 500 К, энергия активации $\Delta E = 0.3$ эВ. С ростом концентрации ионов гадолиния, орбитальные корреляторы магнитных моментов растут.

Рисунок 4. Температурная зависимость обратной величины магнитной восприимчивости для Gd_{0.2}Mn_{0.8}S(1) и восприимчивости Кюри-Вейсса (2), а также их разности $\Delta \chi = \chi^{\text{ex}} - \chi^{\text{CW}}$ (b). На вставке - спиновая восприимчивость при $T < T_c$, вычисленная по формуле (1.3) для параметров J_s = -110K, $M_L = m_L$ (1 - T/T_c)^{0.3} и J_m = 100 K (2), J_{rn} = -100 K (3), и соотношение типа Кюри-Вейсса χ_s (Q) = 1 /[T - J_S(Q)/4] (1) [3].

Для состава с x = 0.15 имеем $m_L^2 = 0.6$, поле анизотропии уменьшается $\lambda = 0.02$, температура блокировки кластеров $T_{c,B} = 450$ К приближается к температуре их образования $T_c = 460$ К, а энергия активации $\Delta E = 0.12$ эВ. Теоретические результаты модели удовлетворительно описывают экспериментальные данные по магнитосопротивлению.

Существование орбитального порядка подтверждается магнитными измерениями. Оно следует из температурной зависимости магнитной восприимчивости (рис. 4a). В интервале температур 550 К< T < 650 К восприимчивость подчиняется закону Кюри-Вейсса С магнитная парамагнитной температурой Кюри θ = -108 К. Ниже 550 К наблюдается отклонение $\chi(T)$ от закона Кюри-Вейсса (величина $\Delta \chi = \chi^{ex} - \chi^{CW}$ показана на рис. 4b). Общая восприимчивость может быть представлена в виде суммы $\chi = \chi_s + \chi_o + \chi_{so}$, где χ_s - магнитная восприимчивость локализованных спинов, χ_0 - орбитальная, а χ_{so}^- смешанная восприимчивости. Ниже температуры перехода в орбитально упорядоченное состояние спиновая и смешанная восприимчивости не подчиняются закону Кюри-Вейсса и зависят от параметра орбитального упорядочения M_L , температурная зависимость которого описывается степенной функцией. Спиновая восприимчивость на волновом векторе структуры имеет следующий аналитический вид [3]:

$$\chi_{s}(Q) = \frac{T + J_{m}(Q)/4(1 - M_{L}^{2})}{T^{2} + \frac{T}{4}[J_{m}(Q) - J_{S}(Q)] - 9/4J_{m}J_{S}(1 - M_{L}^{2})}$$
,(1.3)

где*J*_{*m*}-фурье-образ обменного интеграла между спиновым И орбитальным моментами, $J_S(Q)$ - обменный интеграл между спинами на волновом векторе $Q = \pi$. Спиновая восприимчивость χ_s увеличивается при обменном параметре $J_m < 0$ и падает при $J_m > 0$ ниже температуры перехода в орбитально упорядоченное состояние (вставка к рис.4b).Орбитальное упорядочение в твердом растворе Gd_xMn_{1-x}Sподтверждается также широким максимумом в теплоемкости в области высоких температур, полученной вычитанием фононного вклада ИЗ измеренной экспериментальной зависимости теплоемкости от температуры и из диэлектрических свойств в магнитном полех.

Магнитоемкостный эффект $\delta \varepsilon_{\rm H} = (\varepsilon ({\rm H},{\rm T}) - \varepsilon (0,{\rm T}))/\varepsilon (0,{\rm T}))$ определяется в результате исследования комплексной диэлектрической проницаемости. Диэлектрические свойства отражают также информацию о зарядовом транспорте и процессах зарядового упорядочения.

Емкость и тангенс угла диэлектрических потерь (tgб) измерены на анализаторе компонентов AM-3028 в интервале температур 90-450 К без магнитного поля и в магнитном поле Н=8.6 кЭ. Погрешность измерения диэлектрической проницаемости не более 0,1%.

Вещественная часть $Re(\varepsilon)$ в $Gd_xMn_{1-x}S$ для x=0.1 имеет точку перегиба при T=140 К для состава Gd_{0.1}Mn_{0.9}S. При дальнейшем нагревании Re(ϵ) нелинейно растет, также как и в магнитном поле H=8 кЭдо температуры 357 К. Выше этой температуры диэлектрическая проницаемость магнитном уменьшается В поле. Относительное изменение диэлектрической проницаемости $\delta \varepsilon_{\rm H} = (\varepsilon ({\rm H},{\rm T}) - \varepsilon (0,{\rm T}))/\varepsilon (0,{\rm T}))$ в магнитном поле от температуры достигает максимума 8% при T=200 К.

Мнимая часть диэлектрической проницаемости обнаруживает максимум приТ=140 К для состава Gd_{0.1}Mn_{0.9}S, который исчезает в магнитном поле. Резкий рост Im(є) выше комнатной температуры обусловлен большим вкладом поляризацией ионов решетки в мнимую часть проницаемости, в результате локализации электронов в потенциальных ямах.

Орбитальное упорядочение электронов связано с локализацией электронов на двух из трех орбиталей и при определенном соотношении константы электрон-решеточного взаимодействия индуцирует деформацию октаэдров, что приводит к локальной поляризации решетки. Диэлектрическая восприимчивость описывается в теории Ландау $\chi = A/(1-T_c/T)$ [4], где T_c – температура орбитального упорядочения электронов на t_{2g}орбиталях. Время релаксации электрических зарядов при переходе в орбитальное упорядочение описывается степенной функцией $\tau_c = A/\xi^z = A/(1-T_c/T)^{zv}$, где z- динамический индеек, v - индекс радиуса корреляции (v=1). В области температур (130-210)К вырождение электронов на двух t₂₂орбиталях снимается в результате сильных электронных корреляций и образованием двух неэквивалентных позиций в окрестности ионов гадолиния. Для ионов марганца, расположенных этой области необходимо перескоков электронов В преодолеть энергетический барьер и время релаксации описывается функцией Аррениуса $\tau_2 = \tau_0 \exp(\Delta E/kT)$, где ΔE – энергия активации.

Диэлектрическую восприимчивость можно записать в модели Дебая:

$$\operatorname{Re}(\varepsilon) = \varepsilon_0 + \chi_0 / (1 + (\omega \tau_g)^2) + \chi_0 / (1 + (\omega \tau_c)^2) + B / (1 - T_c / T), \quad (1.4a)$$

Im(ε) =
$$\chi_0 \omega \tau_g / (1 + (\omega \tau_g)^2) + \chi_0 \omega \tau_c / (1 + (\omega \tau_c)^2),$$
 (1.4b)

где ε_0 – температурно независимый вклад в проницаемость, χ_0 –

статическая восприимчивость диполей, В- константа. Диэлектрическая проницаемость для состава Gd_{0.1}Mn_{0.9}Sxopoшo описывается функцией с параметрами $\Delta E=0.069$ эВ, T_c=440 K, z=2. В магнитном поле температура орбитального упорядочения возрастает до T_c=460 K.

Для состава $Gd_{0.2}Mn_{0.8}S$ диэлектрическая проницаемость обусловлена локализованными электронами в подрешетке ионов марганца и электронами проводимости в гадолиниевой подсистеме. Температурная зависимость $Im(\varepsilon(\omega))$ имеет два максимума при T=157 К и T=442 К. В магнитном поле H=8 кЭ низкотемпературный максимум сдвигается в сторону высоких температур до T=170 К (Рис.5). Диэлектрические потери уменьшаются в магнитном поле, кроме температурной области 194-279 К и в 417-451 К (Рис.5).

Рисунок 5. Мнимая часть диэлектрической проницаемости (а) твердого раствора $Gd_{0.2}Mn_{0.8}S$, измеренной на частоте 10 кГц без поля (1) и в магнитном поле H=8кЭ (2) от температуры. Подгоночная функция (4) с энергией активации 0.077 эВ (3), 0.09 эВ(4) (а). Относительное изменение мнимой части диэлектрической проницаемости в магнитном поле от температуры (b)

Низкотемпературный максимум диэлектрических потерь опишем в модели Дебая с релаксацией τ_g с энергией активации $\Delta E=0.077$ э В без магнитного поля и в магнитном поле $\Delta E=0.09$ э В. Подгоночная функция:

Im (
$$\epsilon$$
)=A₁exp($\Delta E/T$)/(1+Bexp(2 $\Delta E/T$)) (1.5)

удовлетворительно описывает экспериментальные данные на Рис. 5 в интервале температур 100-250 К.

Этот максимум связан с переносом заряда между неэквивалентными позициями в кристаллической решетке материала, что в некотором смысле эквивалентно переориентации электрических диполей. Уменьшение диэлектрических потерь в магнитном поле связано с перераспределением электронной плотности по t_{2g}орбиталям, например, между d_{zx}u d_{zy}, что эквивалентно повороту электрического диполя. Частичное упорядочение диполей приведет поляризации. Температура К росту максимумадиэлектрической проницаемости обусловлена характерным временем релаксации рассматриваемой подсистемы.

Рисунок 6. Реальная часть диэлектрической проницаемости (а) твердого раствора $Gd_{0.2}Mn_{0.8}S$, измеренной на частоте 10 кГц без поля (1) и в магнитном поле H=8кЭ (2) от температуры. Подгоночная функция $Re(\epsilon)=A/(1+Bexp(2 \Delta E/T))+\epsilon_0 c$ энергией активации $\Delta E = 0.077$ эВ (3), 0.09 эВ(4) (а).Магнитоемкость в магнитном поле H=8 кЭ температуры (b)

Вещественная часть диэлектрической проницаемости представлена на Рис.6. В интервале температур 130-210 К наблюдается резкий рост диэлектрической проницаемости, которая также описывается в модели Дебая с функцией релаксации по закону Аррениусас энергией активации $\Delta E=0.077-0.09$ эВ. В магнитном поле H=8 кЭотносительное изменение проницаемости $\delta \varepsilon_{\rm H} = (\epsilon ({\rm H},{\rm T}) - \epsilon(0,{\rm T}))/\epsilon (0,{\rm T}))$ достигает максимума 6 % при T=184 К.

В третьей главе исследуетсявлияние электронного допирования на магнитные свойства твердых растворов Mn_{1-x}Ho_xSc целью определения обменных взаимодействий, эффективного магнитного момента ионов в неупорядоченных магнитных полупроводниках и перехода металлдиэлектрик. Согласно рентгеноструктурному анализу образцы твердых растворов Ho_xMn_{1-x}S являются однофазными, имеют кубическую структуру с параметрами элементарной ячейки, увеличивающимися линейно от концентрации ионов гольмия.

Магнитные свойства исследованы установке на QuantumDesingPPPMSXL в интервале температур 4 K<T< 300 K со скоростью нагрева образцов 2 град/мин в магнитном поле H=500 Oe. Магнитная восприимчивость описывается законом Кюри-Вейсасотрицательной парамагнитной температурой Кюри в для всех составов. Небольшие концентрации замещения марганца гольмием вызывают резкое уменьшение $\theta(x)/\theta(x=0)$, практически в три раза для x=0.05 (Рис.7а). Производная восприимчивости d_x(T)/dT для этого состава обнаруживает слабый максимум при Т=103 К, который можно связать с образованием дальнего магнитного порядка.

Эффективный магнитный момент, вычисленный как $\mu_{eff} = (3kC/N\mu_B^2)^{1/2}$ [5], изображен на Рис.7b. Для исходных соединений MnS $\mu_{eff} = 5.5\mu_B$, и для HoS $\mu_{eff} = 10.8 \mu_B$. C ростом концентрации гольмия эффективный магнитный момент линейно растет, кроме области малых концентраций х ≤ 0.05 . В этой области концентраций преобладают изолированные ионы гольмия, электроны которых в 5d оболочке гибридизируются с 3d электронами марганца, что вызывает изменение электронной структуры ближайших ионов марганца, находящихся в окружении иона гольмия. Уменьшение расстояния между ближайшими ионами марганца и деформация октаэдров приведут к изменениюзе фактора и эффективного магнитного момента $\mu_{eff} = g\sqrt{S(S+1)} \mu_B$ иона марганца.

Ион Ho³⁺ находится в окружении $z_1 = 12$ ионов Mn в 1-ой координационной сфере, и во 2-ой $z_2 = 6$. Концентрация таких кластеров с эффективным магнитным моментом μ_{eff}^{Mn} ионов марганца в кластере равна $c_g=zx(1-x)^{z-1}$, где $z=z_1+z_2$. Концентрационную зависимость $\mu_{eff}(x)$ твердого раствора представим в виде $\mu_{eff}(x) = \mu_{Mn}(1-x-c_g+Ac_g)+x\mu_{Ho}$, где подгоночный параметр $A = \mu_{eff}^{Mn} / \mu_{Mn} = 0.76$. Полученное значение магнитного момента $\mu_{eff}^{Mn} = 4.1 \mu_B$ соответствует значению g-фактора g=1.4. В результате кинетического обмена возможно образование ферромагнитного обменного взаимодействия между спинами марганца в окружении иона гольмия, величину которого можно оценить в приближении молекулярного поля из парамагнитной температуры Кюри.

Рисунок 7. Парамагнитная температура Кюри: эксперимент (1) и расчет в молекулярном поле (2) (а), эффективный магнитный момент на один ион (b) от температуры

Парамагнитная температура Кюри сульфида гольмия $\theta=15$ К более чем на порядок меньше, чем в сульфиде марганца MnS. В области больших концентраций x=0.3-0.5 парамагнитная температура Кюри твердого раствора Ho_xMn_{1-x}Symensulation на порядок, а концентрация обменных взаимодействий между ионами марганца и гольмия будет максимальной. Поэтому величина обмена J(Mn-Ho) <<J (Mn-Mn). Основной вклад в уменьшение парамагнитной температуры Кюри при малых концентрациях дают обменные взаимодействия между спинами марганца J *(Mn-Mn), являющихся ближайшими соседями иона гольмия с концентрацией $c_g = zx(1-x)^{z-1}$. В линейном разложении по концентрации парамагнитная температуры Кюри $\Theta(x) = \Theta_{MnS} (1-x-c_g - \lambda c_g) c$ подгоночным параметром λ = J *(Mn-Mn)/ J (Mn-Mn) =0.7 хорошо описывает экспериментальные данные.

Зависимость M(H) имеет точку перегиба и гистерезис намагниченности в интервале полей H=45 кЭ-5.5 кЭ для концентраций X \leq 0.1 при температуре T=5 K. При нагревании T \geq 25K гистерезис исчезает и кривая намагничивания M(H) становится линейной. Для состава с x=0.3 гистерезис сохраняется вплоть до нулевых полей и в отсутствие поля образец имеет спонтанный магнитный момент σ_0 =0.5 emu/g или σ_0 =0.01µ_B.

Электросопротивление измерено четырехзондовым методом в интервале температур 80 K<T< 1000 К. На Рис.8 изображено удельное электросопротивление от температуры для трех концентраций. С ростом концентрации ионов гольмия электросопротивление падает и величина

сопротивления уменьшается на десять порядков для состава с X=0.3. В составе с x=0.01 энергия активации меняется от $\Delta E=0.25$ эВ до $\Delta E=1.4$ эВ с ростом температуры и сопротивление практически не зависит от температуры в интервале 300 К<T< 600 К. Поведение р(Т) типично для примесных полупроводников с истощением концентрации носителей тока на примесных уровнях. С ростом концентрации гольмия энергия активации увеличивается до $\Delta E=0.3$ eV в интервале температур 150 K<T< 300 Κ x=0.1. для Относительное изменение удельного электросопротивления 1/RdR/dT обнаруживает ряд максимумов при T=270 К и 448 К для Х=0.1. Высокотемпературный максимум связан с деформацией октаэдров в окрестности ионов гольмия, окруженного ближайшими ионами марганца. С понижением температуры октаэдры разворачиваются, что приводит к расщеплению примесной подзоны и к росту сопротивления. Максимумы в сопротивлении в области высоких температур 720 К<T< 900 К для x=0.1 и 590 К<T< 780 К для x=0.3 появились в результате замещения ионов марганца ионами гольмия. Эти максимумы связаны с движением химпотенциала к середине запрещенной зоны с ростом температуры и совпадением энергии 4f уровня с химпотенциалом, что приводит к резкому уменьшению подвижности носителей тока. Для больших концентраций гольмия с x=0.3 твердые растворы Ho_xMn_{1-x}S можно отнести к вырожденным полупроводникам, у которых удельное электросопротивление не зависит от температуры и величина сопротивления имеет промежуточное значение между полупроводником и металлом.

Рисунок 8. Температурные зависимости удельного электросопротивления образцов Ho_XMn_{1-X}S с X=0.01 (1); X=0.2 (2); X=0.3 (3) (а) и коэффициента термо-ЭДС (b).

Введение малого количества ионов гольмия качественно меняет температурную зависимость термоэдс, по сравнению с MnS. В интервале температур 640 K<T< 875 Ктермоэдс резко падает, также как и электросопротивление для состава с X=0.01.В твердом растворе Ho_xMn₁. _xScX=0.1 меняется знак термоэдс с отрицательного на положительный (Puc.8b) и наблюдается скачок в сопротивлении при T=450K.

При более высоких температурах можно выделить два широких максимума и минимум в термоэдс при T=700 К. Для состава с x=0.3 температурная зависимость термоэдс имеет вид, характерный для полуметаллов с безактивационным типом проводимости α =-(A+BT). Параметры A и B отличаются на порядок в области низких 80 К <T< 350 К с A=0.004 mV/K, B=2.8 10⁻⁵ и высоких 350 К <T< 600 К температур с A=0.05 mV/K, B=1.9 10⁻⁴. Термоэдсобусловлена носителями тока для этой концентрации гольмия.

В четвертой главеисследуется механизм магниторезистивной связи в полупроводниках с орбитально-вырожденными электронными состояниями и взаимосвязь магнитных, диэлектрических и электрических характеристик при электронном допировании в Mn_{1-x}Ce_xS.

Температурная зависимость восприимчивости Mn_{1-x}Ce_xS имеет максимум при температурах T (x=0.01)=162 К, T (x=0.03)=171 К и T (x=0.05)=155 К, которые связываются с температурами Нееля. В области низких температур восприимчивость резко увеличивается и при высоких температурах наблюдается отклонение от закона Кюри-Вейсса при Т~500 К с парамагнитной температурой Кюри θ =-150 К, определенной в интервале температур 500 К-1000 К, иэффективным магнитным моментом µ=4.55 µ_Вдля х=0.05 (рис.9). Для состава с х=0.01 эффективный магнитный момент возрастает до 8.4µ_в. Обратная восприимчивость описывается законом Кюри-Вейсса $1/\chi(T) = (T + \theta)/C$ с парамагнитной температурой Кюри θ =-600 К для x=0.01, θ =-563 К, x=0.03 и θ =-264 К, x=0.05 в интервале температур 200К - 300 К. В приближении молекулярного поля оценены обменных взаимодействий между константы ионами марганца J=Js+Jm<L(0)L(h)>с учетом корреляционных функцией орбитальных угловых моментов между ближайшими соседями. Смена знака ближнего орбитального порядка по концентрации приведет к изменению величины эффективного обмена и к образованию ферримагнитного состояния со спонтанным магнитным моментом M_{rem} ~0.02 µ_вна ион церия, найденным из гистерезиса для состава с x=0.01. Для состава с x=0.05 гистерезис в полевой зависимости намагниченности отсутствует.

Рисунок 9. Обратная восприимчивость Ce_xMn_{1-x}S для x=0.03 в магнитном поле 8.6 кЭ(1) и зависимость Кюри-Вейсса $1/\chi(T) = (T + \theta)/C$ (2).

Диэлектрическая проницаемость определена из емкости, которая измерена на LCR -метре AM-3028 на частоте ω =100 kHz в интервале температур 100 К< T< 450 К. На Рис.10 приведена действительная часть диэлектрической проницаемости для двух составов, охлажденных в нулевом магнитном поле и в поле H=8 кЭ, от температуры. В области низких температур Re(є) слабо зависит от температуры и выше 250К-300 К резко возрастает, также как проводимость на постоянном токе. В магнитном поле диэлектрическая проницаемость растет, магнитоемкость $\delta \epsilon H = (\epsilon(H) - \epsilon(0))/\epsilon(0)$ уменьшается повышении при температуры и проходит через минимум при T=350 К для X=0.01, а для составов с x=0.03 и x=0.05 меняет знак на отрицательный соответственно при Т=300 К и Т=350 К и исчезает при высоких температурах (Рис.10).

Локализация электронов на двух из трех t_{2g}орбиталях в интервале (440-500) К понижает симметрию распределения электронной плотности и индуцирует орбитальное упорядочение при температуре T_c и приводит к поляризации решетки. Диэлектрическая восприимчивость при фазовом переходе 2-го рода описывается степенной функцией $\chi = A/(1-T/T_c)^{\gamma}$ в теории качественно описывает температурное Ландауи поведение диэлектрической проницаемости (Рис.10) В магнитном поле С температурами T_c (x=0.01)=460 К, T_c (x=0.03)=480 К, T_c (x=0.05)=480 К, $\gamma=1$. Без магнитного поля в температурной зависимости $\epsilon(T)$ наблюдается тенденция достижения максимума в области температур 440-470 К.

Рисунок 10. Действительная часть диэлектрической проницаемости образцов Ce_xMn_{1-x}S, охлажденных без поля (2) и в магнитном поле H=8 кЭ (1) на частоте ω =100 кГц для x=0.03 (b), 0.05 (c) от температуры. На вставках (b, c): изменение диэлектрической проницаемости $\delta \epsilon$ H=(ϵ (H)- ϵ (0))/ ϵ (0) в магнитном поле от температуры. Подгоночная функция Re(ϵ)=A/(1-T/Tc) изображена сплошной линией.

Мнимая часть диэлектрической проницаемости характеризует потери электромагнитного излучения в ионную или электронную подсистему и определяется из тангенса угла потерь $tg\delta=Im(\epsilon)/Re(\epsilon)$. Для всех составов наблюдается максимум диэлектрических потерь (Рис.11), который смещается с ростом концентрации в область высоких температур от T=370 К с x=0.01 к T=430 К для состава с x=0.05 без поля.

В магнитном поле также наблюдается сдвиг температур максимума $Im(\varepsilon(T))$ в область высоких температур T=404 К для x=0.01, T=430 К для x=0.03. Эти максимумы на частоте ω =100 кГц вызваны совпадением времен релаксации и измерения, и объясняются в модели Дебая [4]:

Im $\chi = \chi_0 (\omega \tau) / (1 + (\omega \tau)^2)$, где $\tau = \tau_0 / (1 - T/Tc)^{zv}$. (1.5)

Где χ_0 - статическая восприимчивость, τ_0 – частотный фактор, определяющий релаксацию в области низких температур T<<Tc. На Рис. 11 подгоночная функция с zv=2удовлетворительно описывает экспериментальные данные В широком интервале температур С температурами, при которых диэлектрическая восприимчивость имеет максимум, время релаксации при низких температурах т₀ находится в мегагерцовом диапазоне частот ~ 10 Мгц. Значения времен релаксации типично для доменных границ в ферроэлектриках.

Рисунок 11. Мнимая часть диэлектрической проницаемости образцов Ce_xMn_{1-x}S, охлажденных без поля (1) и в магнитном поле H=8 кЭ (2), на частоте ω =100 кГц для x=0.03 (c), 0.05 (e) от температуры. Подгоночная функция Im χ = $\chi_0 (\omega \tau)/(1+(\omega \tau)^2)$, где τ = $\tau_0 /(1-T/Tc)^2$ изображена сплошной линией.

Электросопротивление растворов $Cs_{x}Mn_{1-x}S$ твердых измерено четырехзондовым методом на образцах, охлажденных без магнитного поля и в режиме охлаждение и нагрев в магнитном поле H=8 кЭ. Магнитное поле направлено перпендикулярно току. Ha Рис.12 изображены температурные зависимости электросопротивления для трех составов х=0.01, 0.03 и 0.05.

При охлаждении в нулевом магнитном поле наблюдается максимум в электросопротивлении, который смещается в сторону низких температур с ростом концентрации отT=238 К, x=0.01, T=200К, x=0.03 до T=166 К, x=0.05. Ниже температуры максимума сопротивление слабо меняется в некотором интервале температур, причем величина электросопротивления в несколько раз меньше, чем при комнатной температуре. В магнитном H=8кЭ поле максимум температурном В поведении электросопротивлениясмещается на 72К до T=166 К для x=0.01, на 65 К до T=134К для x=0.03 и для состава с x=0.05 температуры совпадают, но величина электросопротивления в магнитном поле возрастает в два раза в области комнатных температур и выше, при низких температурах на (Рис.12 d, e). В результате смещения 300%-500% максимума В электросопротивлении, магнитосопротивление (Рис.12) меняет знак с положительного на отрицательный.

23

Рисунок 12.Электросопротивление образцов Ce_xMn_{1-x}S, охлажденных без поля (1) и в магнитном поле H=8 кЭ (2) для x=0.01 (a), 0.03 (c), 0.05 (g) от температуры. Относительное изменение электросопроивления (ρ (H)- ρ (0))/ ρ (0) для составов с x=0.01 (b), 0.03 (d), 0.05 (e) от температуры. Подгоночная функция 1/R=Aexp(- δ_t)+Bexp(- $\Delta E/kT$), где $\Delta E=E_c$ - μ , изображена линией.

В образцах. охлажденных нагретых И В магнитном поле. сопротивление возрастает ниже температуры Нееля при T(x=0.01) =130 K, Т (x=0.03)=133 К, и скачком при Т (x=0.05)=132 К. Локализация дырок в интервале (230-250) К сопровождается изменением типа проводимости с прыжкового типа проводимости на туннельный тип. Для концентрации x=0.05 преобладает туннельныя дырочная проводимость. В области (170-180) К максимум В электросопротивлении вызван перестройкойэлектронной структуры при структурном переходе, который наблюдался в MnS при температуре T=165 К.

В общем случае проводимость обусловлена электронами и дырками и существует четыре канала проводимости: термоактивационный прыжковый и туннельный типы проводимости электронов и дырок. Для x=0.05 преобладает дырочный тип проводимости,поэтому ограничимся двумя каналами проводимости $\sigma=\sigma_t + \sigma_{hop}=Aexp(-\delta_t)+Bexp(-\Delta E/kT)$, где $\Delta E=E_c-\mu$, E_c - край подвижности дырок, μ – химический потенциал, δ_t – константа туннелирования. Если константа A в туннельном токе меняется в пределах (0.1-1), то проводимость можно описать двумя параметрами:

константой туннелирования и энергией активации, приведенных на Рис. 12. В магнитном поле константатуннелирования возрастает на 3%.

Вероятность туннелирования частиц через потенциальный барьер зависит от эффективной массы частицы, которая уменьшается при нагревании при перестройке электронной структуры в окрестности максимума электросопротивления.

Рисунок 13. Вольт-амперные зависимости $Ce_xMn_{1-x}S$, измеренные без поля (1) и в магнитном поле H=8 кЭ (2) для x= 0.03 (c), 0.05 (е) при комнатной температуре. Изменение напряжения (электросопротивления) в магнитном поле от постоянного тока для x= 0.03 (d), 0.05 (g) при T=300 К и при T=400 К (2-d). Подгоночная функция I=I₀ (exp(N(E_c)U/kT)-1 [6] изображена линией.

При комнатной температуре проведены измерения вольт-амперных характеристик (ВАХ) без поля и в магнитном поле (Рис.13). С ростом напряжения ток монотонно возрастает и при напряжении $U_c>1.2$ В наблюдается скачок. Величина критического напряжения незначительно растет от $U_c=1.22$ В для x=0.01 до $U_c=1.25$ В для x=0.05. Скачок в зависимости тока от напряжения сдвигается в сторону большего электрического поля $U_c=1.26$ В, x=0.01 и $U_c=1.43$ В для x=0.05 в магнитном поле H=8 кЭ. Магниторезистивный эффект растет с ростом концентрации и составляет 4% для x=0.01, 10% для x=0.03, 16 %, x=0.05 (Рис.13 d, g). С ростом температуры магниторезистивный эффект усиливается и при T=400 К магнитосопротивление составляет 14%.

Обнаружена токовая зависимость магнитосопротивления и наличие широкого максимума (Рис. 13 d, g).

При напряжениях U <U_сэкспериментальные данные удовлетворительно описываются ВАХ для диодов Шотки в прямом направлении I=I₀ (exp(qU/nkT)-1), где I₀- ток насыщения, n – коэффициент идеальности. В наших системах с орбитальным упорядочением заменим величину заряда на плотность заряда N(E_c) на краю подвижности носителей тока I=I₀ (exp(N(E_c)U/kT)-1).

Определен знак носителей заряда в интервале температур 100 K< T < 450 K из Холловских измерений в магнитном поле H=8 кЭ. Холловское сопротивление (Rx) отрицательно в интервале температур 150 K< T < 377 K для x=0.01 и имеет два ярко выраженных минимума при T=195 K и T=340K, при которых наблюдаются экстремумы в магнитосопротивлении. С ростом концентрации область с электронным типом проводимости уменьшается до 200 K< T < 330 K и минимум в Rx(T) наблюдается при T=284K, где магнитосопротивление меняет знак с отрицательного на положительный. При нагревании Rx(T) проходит через максимум при T=394 K и минимума Холловского сопротивленияT=327 K совпадает с температура максимума в магнитосопротивлении. Ниже температуры кроссовера смены типа проводимости с прыжкового на туннельный тип, величина Холловского сопротивления уменьшается более чем на порядок.

В заключении приведены основные результаты работы и выводы

1.Втвердом растворе Gd_xMn_{1-x}S для всех составов обнаружен полупроводниковый тип проводимости. Установлен рост сопротивления в магнитном поле, вызванный усилением корреляций орбитальных угловыхмагнитных моментов. Из вольт-амперной характеристики найден максимум магнитосопротивления как по току, так и по напряжению.

2. Установлен СДВИГ температуры максимума мнимой части диэлектрической проницаемости в область высоких температур как с ростом концентрации ионов гадолиния, так и в магнитном поле. Найдено уменьшение диэлектрических потерь в магнитном поле. Результаты удовлетворительно описываются в модели Дебая с "замерзанием" Рост диэлектрической проницаемости дипольных моментов. выше обусловлен электронным комнатной температуры вкладом И исчезновением орбитального упорядочения.

3. Обнаруженорезкое уменьшениеэффективного магнитного момента и парамагнитной температуры Кюри в твердом растворе $Ho_xMn_{1-x}S$ в интервале концентраций 0 < x < 0.1, что обусловлено вкладом орбитальных угловых магнитных моментов и образованием ферромагнитных связей между ионами марганца в ближайшем окружении ионов гольмия.

4. Установлена смена типа проводимости с полупроводникового на металлический в $Ho_XMn_{1-X}S$ при концентрации x=0.3. Найдена смена знака носителей тока по температуре для состава с x=0.1 и по концентрации с x=0.3. Термо-эдсобусловлена носителями тока.

5.Обнаружено отклонение магнитной восприимчивости от закона Кюри-Вейссав твердых растворах Ce_xMn_{1-x}S ниже температуры 500 К и максимумдиэлектрической проницаемости в интервале температур (440-470) К, которыеописываются в модели с орбитальным упорядочением электронов.Температурная зависимость диэлектрической проницаемости описывается в модели Дебая со сдвигом температуры максимума диэлектрических потерь в сторону высоких температур в магнитном поле.

6. Обнаружен острый максимум в электросопротивлении в твердых растворах $Ce_xMn_{1-x}S$, температура которого смещается в сторону низких температур с ростом концентрации церия. Найдена температура кроссовера от туннельного к активационному типу проводимости. Для двух составов установлен интервал температур с электронным типом проводимости, а для состава с x=0.05 обнаружен дырочный тип проводимости. Аномалии транспортных характеристик объясняются поворотом октаэдров и сдвигом уровней энергии t_{2g} состояний электронов, обладающих угловым орбитальным моментом.

7. Установлен сдвиг температуры максимума электросопротивления образцов Ce_xMn_{1-x}S в магнитном поле для двух составов и рост электросопротивления для состава с x=0.05 в магнитном поле.Найден рост магнитосопротивления из вольт-амперных характеристик с увеличением концентрации. Установлена зависимость магнитосопротивления от тока. Обнаруженные эффекты вызваны изменением орбитальных угловых корреляций электронов в магнитном поле.

27

Основное содержание и результаты диссертации отражены в следующих публикациях:

Статьи в реферируемых журналах

1. S.S. Aplesnin, A.M. Kharkov, M.N. Sitnikov, V.V. Sokolov.Spin reduction in the $Mn_{1_x}Ho_xS$ solid solutions // Journal of Magnetism and Magnetic Materials, 2013. – V.347. – p. 10–13.

2.S.S. Aplesnin, M.N. Sitnikov, O.B. Romanova, E.V.Eremin, V.V. Sokolov, A.Yu. Pichugin.Magnetoresistance and Magnetic Properties $Ce_xMn_{1-x}S$ // Solid State Phenomena,2015. – V. 233-234. – p. 419-422.

3. С.С. Аплеснин, М.Н. Ситников. Магнитотранспортные эффекты в парамагнитном состоянии в $Gd_xMn_{1-x}S$ // Письма в ЖЭТФ, Том 100, Выпуск 2, 2014. – С.104-110.

4.С.С. Аплеснин, М.Н. Ситников.Магнитоемкостныйэффект в Gd_xMn₁. _xS //Журнал «Физика твердого тела», Том 58, Выпуск6. 2016.-С.1112-1117.

5. О. Б. Романова, А. М. Харьков, М. Н. Ситников, В. В. Кретинин.Переход металл-диэлектрик в катион-замещённых соединениях $RE_XMN_{1-X}S$ (Re = Gd, Sm, Ho) //Вестник Сибирского государственного аэрокосмического университета имени академика М.Ф. Решетнева, Том 16, № 2. Красноярск, 2015. – С.478-484.

Материалымеждународныхивсероссийскихконференций

6. С.С.Аплеснин, М.Н. Ситников. Магнитоэлектрические свойства твердых растворов Gd_xMn_{1-x}S // Тезисы докладов 11-ой Российской конференции по физике полупроводников. Санкт-Петербург, 2013– С.139.

7. С.С. Аплеснин, М.Н. Ситников, А.В. Гирн. Структурные и магниторезистивные свойства GD_XMN_{1-X}S// Материалы XVII Междунар. Науч. конф., посвящ. памяти генерального конструктора ракетно-космических систем академика М.Ф. Решетнева «Решетневские чтения», Красноярск, 2013. – Часть 1. –С.144.

8. С.С. Аплеснин, М.Н. Ситников, В.В. Соколов, А.Ю. Пичугин. Магниторезистивный эффект в твердых растворах Gd_xMn_{1-x}S//ФТТ- 2013. Актуальные проблемы физики твердого тела. Сборник докладов международной научной конференции, Минск, 2013.–С.68-69.

9. С.С. Аплеснин, М.Н. Ситников. Диэлектрические свойства твердых растворов Gd_xMn_{1-x}S//Материалы XVIМеждунар. Науч. конф.,посвящ. памяти генерального конструктора ракетно-космических систем академика М.Ф. Решетнева «Решетневские чтения», Красноярск, 2012. –Часть 1. – С.416.

10.С.С. Аплеснин, М.Н. Ситников. Магниторезистивный эффект в полупроводниках с орбитальным упорядочением//Тезисы конференции XX Уральская международная зимняя школа по физике полупроводников, Екатеринбург-Новоуральск, 2014. –С.34-36.

11.S.S. Aplesnin, M.N. Sitnikov, O.B. Romanova, E.V. Eremin, V.V. Sokolov, A.Yu. Pichugin.Magnetoresistance and Magnetic Properties $Ce_xMn_{1-x}S$ // Book of Abstracts Moscow International Symposium on Magnetism, Moskow, 2014. –p.621.

12. С.С. Аплеснин, М.Н. Ситников, О.Б. Романова, В.В. Соколов, А.Ю. Пичугин. Свойства мультиферроиков в твердых растворах Ce_xMn_{1-x}Sc редкоземельными элементами с переменной валентностью//Тезисы докладов VI Байкальской международной конференции "Магнитные материалы и новые технологии".ВІСММ-2014, Пос. БольшоеГолустное, Иркутская область, 2014. –С.13-14.

13. С.С. Аплеснин, М.Н. Ситников. Транспортные свойства твердых растворов CexMn1-xS//Материалы XVIIIМеждунар. Науч. конф., посвящ. памяти генерального конструктора ракетно-космических систем академика М.Ф. Решетнева «Решетневские чтения», Красноярск, 2014. –Часть 1. – С.453-455.

14.S.S. Aplesnin, M.N. Sitnikov.Conductivity of Ho_xMn_{1-x}S magnetic semiconductors with orbital ordering//International Conference "Spin physics, spin chemistry and spin technology". SPCT-2015.St. Petersburg, 2015.–p.47.

15. С.С. Аплеснин, М.Н. Ситников, О.Н. Бандурина.Магнитоэлектрические свойства твёрдых растворов Me_xMn₁. _xS(Me=Co, Gd)//Материалы XIXМеждунар. Науч. конф., посвящ. памяти генерального конструктора ракетно-космических систем академика М.Ф. Решетнева «Решетневские чтения», Красноярск, 2015. –Часть 1. –С.212-213.

16.С.С.Аплеснин, М.Н. Ситников, А.М. Харьков, О.Б. Романова. Магнитные свойства сульфидов марганца Mn_{1-x}Re_xS (Re=Cs, Yb) с сильными электронными корреляциями // Сборник трудов 11-го Международного семинара «Магнитные фазовые переходы», Махачкала, 2015. –С.24-27.

17. С.С. Аплеснин, М.Н. Ситников, А.М. Харьков.Магнитные и электрические переходы «металл-диэлектрик» в Ho_xMn_{1-x}S// Тезисы докладов Международной конференции, посвящённой 80-летию члена-корреспондента РАН И. К. Камилова, Махачкала. 2015. –С.68.

Списокцитируемойлитературы

1. Aplesnin, S.S., Ryabinkina, L.I., Abramova, G.M., Romanova, O.B., Vorotynov, A.M., Velikanov, D.A., Kiselev, N.I, Balaev, A.D.Conductivity, weakferromagnetism, and charge instability in an α -MnS single crystal // Phys. Rev. B. - 2005. - V. 71, No 1. - P. 125204-125212.

2. Peters, R., Kawakami, N., Pruschke, T. Orbital Order, Metal Insulator Transition, and Magnetoresistance-Effect in thetwo-orbital Hubbard model // Phys. Rev. B. – 2011. – V.83, № 12, 125110 / 1-7.

3. Нагаев Э.Л. Магнетики со сложными обменными взаимодействиями.// М.: Наука. – 1988. – с. 231.

4. Киттель Ч. Введение в физику твёрдого тела // М.: Наука. – 1978. – с.487.

5. Смарт Дж. Эффективное поле в теории магнетизма //М.: Мир. – 1968. — 271 с.

6. Бонч-Бруевич В.Л., Калашников С.Г. Физика полупроводников // Наука, М.: 1990.

Максим Николаевич Ситников

Влияние электронного допирования на магнитные и электрические свойства полупроводников с редкоземельными элементами Re_xMn_{1-x}S (Re = Ce, Gd, Ho) Автореферат