На правах рукописи

САМСОНОВ АНДРЕЙ ВИКТОРОВИЧ

АТОМИСТИЧЕСКОЕ МОДЕЛИРОВАНИЕ НЕСОРАЗМЕРНОЙ ФАЗЫ В КВАРЦЕ

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Специальность 01.04.07 - физика конденсированного состояния

Барнаул – 2010

Работа выполнена в ГОУ ВПО «Алтайский государственный технический университет им. И.И. Ползунова» и в Институте проблем сверхпластичности метаплов РАН.

Официальные оппоненты:	доктор физико-математических наук, профессор Поляков Виктор Владимирович
	доктор физико-математических наук, профессор Клопотов Анатолий Анатольевич
Научные руководители:	доктор физико-математических наук, профессор Старостенков Михаил Дмитриевич
	доктор физико-математических наук Дмитриев Сергей Владимирович
Ведущая организация:	Уральский государственный лесотехнический университет, г. Екатеринбург

Защита состоится 24 декабря 2010 г. в 12 час. на заседании диссертационного совета Д212.004.04 при Алтайском государственном техническом университете им. И.И. Ползунова по адресу: 656038, г. Барнаул, пр. Ленина, 46.

С диссертацией можно ознакомиться в научной библиотеке Алтайского государственного технического университета им. И.И. Ползунова.

Автореферат разослан 19 ноября 2010 г.

Ученый секретарь диссертационного совета

Романенко В.В.

Примечание: отзывы на автореферат, заверенные печатью организаций, просим присылать в 2-х экз. на адрес университета.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы. Фазовые переходы играют большую роль в формировании физической картины мира. Результат таких переходов, как. например, испарение или плавление, легко наблюдать простыми средствами, в том числе и визуально, поскольку связанные с ними изменения физических свойств весьма значительны. Однако многие из переходов «твердое тело – твердое тело» распознать непросто, и для этого приходится использовать сложные экспериментальные методы и аппаратуру (рассеяние нейтронов, рентгеновских и оптических лучей, измерение электросопротивления, модулей упругости, намагниченности, теплоемкости, и др.). Тем не менее, переходы «твердое тело – твердое тело» ответственны за изменение очень важных для практики физических свойств, и поэтому их изучение представляется весьма актуальным. Особое место среди твердофазных состояний материала занимают несоразмерные фазы. Одно или несколько физических свойств в этом случае меняются вдоль кристалла периодически, причем, длина этого периода не связана рациональным соотношением с периодом решетки. Таким образом, дальний порядок, свойственный кристаллическим телам, в системе с несоразмерной модуляцией отсутствует, но и к аморфным телам ее отнести нельзя, поскольку нет оборванных связей и других свойственных им атрибутов структуры. Впервые несоразмерную фазу обнаружили в магнитных системах с геликоидальной структурой, где период структуры был несоразмерен периоду кристаллической решетки. К настоящему времени список кристаллических твердых тел, при определенных условиях претерпевающих переход к несоразмерной фазе, весьма широк [1]. Кварц (SiO₂), изучению которого посвящена данная диссертационная работа, является одним из примеров таких тел.

Кварц является одной из кристаллических форм силикатов (SiO₂) наряду с кристобаллитом, стишовитом, коэситом и тридмитом. Имеются и аморфные формы силикатов. В целом, силикаты представляют собой самое распространенное химическое соединение земной коры, что вызывает к ним большой интерес геологов и геофизиков. Кварц находит широкое применение в электронных приборах благодаря своим пьезоэлектрическим свойствам. Жаропрочность кварца (T_{пл}=1990 K) используется при изготовлении из него окон высокотемпературных камер.

Уже более ста лет известно, что при температуре 846 К кварц претерпевает фазовый переход, сопровождающийся изменением его объема и формы. Кварц, существующий при комнатных температурах, является низкосимметричной формой, обозначаемой *а*-кварц, а высокосимметричная высокотемпературная фаза обозначается как *b*-кварц. Для удовлетворения потребностей электронной промышленности была разработана технология получения практически бездефектных кристаллов кварца высокой чистоты. Поэтому кварц нередко используется исследователями для отработки новых экспериментальных методик и для поверки экспериментального оборудования. Как следствие, к настоящему времени кварц является одним из наиболее хорошо изученных минералов.

Открытие в начале 1970 годов несоразмерной фазы кварца вблизи *а-b* перехода оказалось достаточно неожиданным и породило новую волну научного интереса к нему.

Первые теоретические исследования несоразмерной фазы в кварце были выполнены Т.А. Асланяном и А.П. Леванюком [2,3] основываясь на теории фазовых переходов Ландау. Некоторые из их выводов были впоследствии подтверждены экспериментально в работах Долино [4,5], Гохары и Като [6,7] и ряде других. На основе этих теоретических и экспериментальных данных Долино выдвинул феноменологическую модель несоразмерной фазы в кварце. Однако дальнейшие экспериментальные исследования выявили ряд фактов, которые не находят объяснения в рамках его модели (например, отсутствие некоторых пиков на дифракционных картинах рассеяния нейтронов, оптические аномалии и др.). Для преодоления этих трудностей Т.А. Асланян с соавторами недавно выдвинули новую феноменологическую модель [8,9].

Представляется интересным проведение атомистических расчетов с целью установления природы несоразмерной фазы в кварце, что и является главной целью настоящей работы.

Таким образом, *актуальность* настоящей работы вытекает из необходимости проведения независимого атомистического исследования природы несоразмерной фазы кварца, по поводу которой ведутся активные дискуссии, и существует противостояние двух феноменологических моделей.

Работа была поддержана грантом РФФИ 09-08-00695-а «Нелинейные кооперативные явления, протекающие на атомарном и нано-уровнях в материалах при интенсивных воздействиях».

Цель и задачи исследования:

Целью диссертационной работы является изучение методами атомистического моделирования физической природы несоразмерной фазы кварца.

Для достижения данной цели решались следующие задачи:

- 1. Построение методом молекулярной квазистатики фазовой диаграммы кварца при нулевой температуре в координатах компонент однородной деформации $e_1 = \varepsilon_{xx} = e_{yy}$, $e_2 = \varepsilon_{zz}$ и в координатах макроскопических напряжений $\sigma_{xx} = \sigma_{yy}$, σ_{zz} .
- 2. Расчет дисперсионных кривых кварца в различных точках фазовой диаграммы и анализ фазового перехода по механизму мягкой моды.

- 3. Молекулярно-динамическое исследование влияния температуры на различные соразмерные модулированные фазы кварца.
- 4. Анализ одномерной модели кристалла с частицами конечных размеров, качественно воспроизводящей цепочку фазовых превращений, наблюдаемых в кварце в окрестности *a*-*b* перехода.

Научная новизна:

- 1. Методами атомистического моделирования построена и исследована детальная фазовая диаграмма кварца при нулевой температуре в координатах компонент однородной деформации $e_1=\varepsilon_{xx}=\varepsilon_{yy}$, $e_3=\varepsilon_{zz}$ и в координатах макроскопических напряжений $\sigma_{xx}=\sigma_{yy}$, σ_{zz} .
- Рассчитаны дисперсионные кривые и малоамплитудные колебательные моды кварца и показано, что предложенная атомистическая модель описывает мягкую моду, ответственную за фазовые переходы в кварце, в полном соответствии с экспериментальными наблюдениями.
- Получено независимое подтверждение новой феноменологической концепции несоразмерной фазы кварца, выдвинутой недавно в работах Асланяна с соавторами.
- Показано, что одномерная модель кристалла с частицами конечных размеров имеет фазовую диаграмму топологически эквивалентную фазовой диаграмме кварца и качественно воспроизводит цепочку фазовых превращений кварца вблизи *a*-*b* перехода.

Научная и практическая ценность работы:

1. Главным научным результатом работы является независимая проверка адекватности двух существующих феноменологических теорий несоразмерной фазы кварца путем атомистического моделирования. Полученные результаты говорят в пользу теории Т.А. Асланяна [8,9] и помогают разрешить ряд противоречий с экспериментально наблюдаемыми фактами, которые не находили объяснения в рамках предшествующей теории. Важность работы состоит в общности изучаемого явления для многих кристаллов. Несоразмерные фазы наблюдаются не только в диэлектриках, но и как переходные фазы во многих сплавах [11].

2. Детальное исследование фазовой диаграммы кварца вблизи *a*-*b* перехода имеет также и практическое значение, учитывая тот факт, что кварц находит применение при изготовлении резонаторов - устройств для стабилизации частоты электронных генераторов, а также нередко выступает в качестве эталонного материала при поверке экспериментального оборудования или при апробации новых экспериментальных методов анализа структуры кристаллических материалов.

На защиту выносятся следующие положения:

1. Методами атомистического моделирования получена фазовая диаграмма кварца при нулевой температуре, объясняющая последовательность фаз вблизи *a*-*b* перехода и свидетельствующая в пользу феноменологической теории Т.А. Асланяна несоразмерной фазы в кварце. В частности, утверждается, что период этой фазы близок к трем параметрам решетки, а не к тридцати, как считалось ранее.

2. Показано, что одномерная модель кристалла с частицами конечных размеров имеет фазовую диаграмму, включающую несоразмерные фазы, которая топологически эквивалентна фазовой диаграмме кварца, что подтверждает важность учета вращательных степеней свободы сравнительно жестких тетраэдров SiO₄ при описании фазового перехода в кварце.

Апробация работы.

Основные результаты работы докладывались на следующих научных форумах: Х Международная школа-семинар "Эволюция дефектных структур в конденсированных средах" (ЭДС – 2008), 8-12 сентября 2008, г. Барнаул, г. Бийск; Всероссийская молодежная научная конференция «Мавлютовские чтения», 28-29 октября 2008, г. Уфа: Международная научно-практическая конференция "Проблемы и перспективы развития литейного, сварочного и кузнечно-штамповочного производства", ноябрь 2008, г. Барнаул; Всероссийская научная конференция студентов, аспирантов и молодых ученых "Наука. Технологии. Инновации" (НТИ-2008), 4-7 декабря 2008, г. Новосибирск; Международный симпозиум «Перспективные материалы и технологии» 25-29 мая 2009, г. Витебск, Беларусь; Х Международная научнотехническая уральская школа-семинар металловедов – молодых ученых, 7-11 декабря 2009, г. Екатеринбург; XI Международная школа-семинар "Эволюция дефектных структур в конденсированных средах" (ЭДС - 2010), 6-10 сентября 2010, г. Барнаул; IX Международная научно-техническая конференция «Физика и технические приложения волновых процессов», 13-17 сентября 2010, г. Миасс; Международная школа-конференция для студентов, аспирантов и молодых ученых «Фундаментальная математика и ее приложения в естествознании», 3-7 октября 2010, г. Уфа-2010; II Школаконференция стран СНГ «Ультрамелкозернистые и наноструктурые материалы» 11-15 октября 2010, г. Уфа.

Публикации. Результаты исследований опубликованы в 14 печатных работах.

Структура и объем работы. Диссертация состоит из введения, четырех глав, заключения и списка литературы из 116 наименований. Работа изложена на 134 страницах машинописного текста, содержит 32 рисунка.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность исследуемой проблемы, сформулирована цель диссертационной работы, описаны научная новизна, практическая ценность и основные защищаемые положения. Дается краткое содержание работы по главам. **В первой главе** даются основные сведения о несоразмерной фазе, наблюдаемой в целом ряде кристаллов при изменении температуры и/или давления, делается обзор литературы по экспериментальным, теоретическим и компьютерным методам изучения несоразмерных фаз. Описываются имеющиеся феноменологические теории несоразмерной фазы в кварце, приводятся примеры экспериментальных фактов, при теоретическом объяснении которых имеются определенные трудности. В итоге, формулируются открытые проблемы, которые могли бы быть решены методами компьютерного моделирования на атомарном уровне, что и является предметом дальнейшего исследования в данной диссертационной работе.

Рис. 1. (а) Структура *b*-кварца. (б) Обратное пространство для решетки кварца с обозначением высокосимметричных точек и направлений.

Вторая глава диссертации посвящена построению фазовой диаграммы кварца в пространстве деформаций $e_1 = e_2$, e_3 и в пространстве напряжений $S_{xx} = S_{yy}$, S_{zz} . Дается описание используемых методов моделирования, в число которых водят релаксационная динамика, расчет фононных спектров и молекулярная динамика. Метод релаксационной динамики использовался для нахождения различных равновесных фаз кварца; расчет дисперсионных кривых производился для анализа особенностей фононных спектров этих фаз; метод молекулярной динамики использовался для анализа влияния температуры на равновесные фазы. Сочетание трех этих методов позволило получить всестороннюю и достоверную информацию об изучаемом фазовом переходе.

Взаимодействия между атомами описываются парными межатомными потенциалами, рассчитанными Цунеюки с соавторами из первых принципов [10]. Эти потенциалы успешно воспроизводят различные устойчивые полиморфные модификации силикатов, отрицательный коэффициент Пуассона, свойственный для некоторых из них, в определенных интервалах внешних параметров, *a*–*b* переход, тепловое расширение кварца, бозонный пик аморфного силиката, и модулированные фазы кварца.

Энергия взаимодействия пары атомов сорта К и L определяется выражением

$$U_{KL}(r) = \frac{Q_K Q_L}{r} + f_0 (b_K + b_L) \exp\left[\frac{a_K + a_L - r}{b_K + b_L}\right] - \frac{C_K C_L}{r^6},$$
 (1)

которое включает кулоновское взаимодействие, борн-маеровское отталкивание и дисперсионное взаимодействие, описываемые тремя слагаемыми в правой части, соответственно. Здесь *r* - расстояние между рассматриваемой парой атомов, $a_K(b_K)$ и $a_L(b_L)$ - эффективные радиусы (параметры мягкости) атомов сорта *K* и *L*, соответственно, а стандартная сила $f_0 = 1 \text{ kcal mol}^{-1} \text{ Å}^{-1}$. Такие или подобные потенциалы находят широкое применение в молекулярно-динамических расчетах кристаллов с ионной и со смешанной ионно-ковалентной связью. Параметры потенциалов таковы [10]: $Q_0 = -1.2e$, $Q_{\text{Si}} = 2.4e$, $a_0 = 2.0474 \text{ Å}$, $a_{\text{Si}} = 0.8688 \text{ Å}$, $b_0 = 0.17566 \text{ Å}$, $b_{\text{Si}} = 0.03285 \text{ Å}$, $C_0 = 70.37 \text{ Å}^3 (\text{kcal/mol})^{1/2}$, $C_{\text{Si}} = 23.18 \text{ Å}^3 (\text{kcal/mol})^{1/2}$. Массы атомов M₀=16.0g/mol, M_{Si}=28.09g/mol.

Используя тот факт, что в процессе a-b перехода в кварце тетраэдры SiO_4 практически не деформируются, но их относительные повороты значительны, угол поворота тетраэдров относительно их ориентации в высокосимметричной b-фазе нередко выбирается в качестве параметра порядка. Альтернативное определение параметра порядка учитывает перемещения атомов Si от их положений в b-фазе.

Фазовая диаграмма в пространстве деформаций $e_1 = e_2$, e_3 при нулевой температуре представлена на рис. 2, а в пространстве напряжений $S_{xx} = S_{yy}$, S_{zz} , на рис. 3. Прежде всего, опишем главные особенности фазовой диаграммы, а затем дадим более детальное описание, затрагивая свойства равновесных фаз.

Релаксационная динамика с использованием одной ячейки периодичности кварца выявила, что левее (правее) линии T_{tr} на рис. 2 равновесной оказывается конфигурация атомов, соответствующая a(b) кварцу. Линия $a \leftrightarrow b$ перехода не зависит от того, находилась ли она путем контроля напряжений (светлые квадраты) или деформаций (черные квадраты).

Жирная черная точка, обозначенная U_0^a , показывает компоненты деформаций, при которых *a* фаза существует при нулевых напряжениях. Координаты этой точки $e_1 = -0.0029$, $e_3 = -0.0018$ и она не совпадает с началом координат, поскольку в наших расчетах с целью увеличения их точности радиус обрезки потенциалов Цунеюки равнялся 30Å вместо 20Å, при котором производилась подгонка параметров потенциалов. Штриховая линия V_0^a - это линия постоянного объема, равного объему равновесной ячейки периодичности *a*-фазы.

В области устойчивости **b** -фазы нет точки, соответствующей нулевым напряжениям. Для того, чтобы найти такую точку, мы искусственно поддерживали симметрию **b** -фазы. Такая искусственно поддерживаемая неустойчивая фаза обозначена через **b**'-фазу, и она имеет нулевые напряжения в точке $U_0^{b'}$ с координатами $e_1 = 0.0330$, $e_3 = 0.0342$.

Особое значение для нас будет иметь пунктирная линия, проходящая через точки $U_0^{b'}$ и R. Это линия однородной деформации, рассматривавшаяся в работах Смирнова и Миргородского [12,13]. При движении вдоль этой линии, согласно их данным, $a \leftrightarrow b$ переход происходит при $e_1 = e_2 = 0.04$, и это значение очень хорошо согласуется с нашими результатами (точка R). Напряжения в точке R очень близки к условиям гидростатического растягивающего напряжения $s_{xx} = s_{yy} = s_{zz} = 2.7$ ГПа.

Пунктирная линия V_{tr}^* - это линия постоянного объема ячейки периодичности, равного объему в точке R, лежащей на линии однородной деформации. Этот объем равен $V_{tr}^* = 135.33$ Å³, что на 13% превышает объем V_0^a . Линии I, II и III отделяют области, где эффективная потенциальная энергия кристалла Φ , как функция параметра порядка h при фиксированном объеме ячейки ΔV имеет различную форму. Зависимость $\Phi(h, \Delta V)$ представлена на рис. 3.

Рис. 2. Фазовая диаграмма кварца при нулевой температуре в пространстве деформаций, построенная методом релаксационной динамики с использованием расчетной ячейки, включающей одну примитивную ячейку.

Рис. 3. Потенциальная энергия структурной ячейки Φ , как функция изменения объема ячейки ΔV и параметра порядка h. На линии $a \leftrightarrow b$ перехода $T_{\rm tr}$ форма потенциала меняется с одноямной на двухъямную.

В работе было показано, что размерность построенной фазовой диаграммы можно понизить на единицу. В качестве единственного параметра предлагается взять либо изменение объема структурной ячейки (в пространстве деформаций) либо след тензора напряжений (в пространстве напряжений). Вдоль линий равного объема практически постоянными оказываются, например, параметр порядка *h* и частота мягкой моды.

В третьей главе проводится уточнение фазовой диаграммы путем расчета фононных спектров равновесных фаз *a* и *b*, найденных в главе 2.

Волновой всктор | k

Рис. 4. Дисперсионные кривые для *b* -кварца вблизи фазового перехода, $e_1 = e_2 = 0.02$, $e_3 = 0.077$ (низкочастотная часть). Ветвь TA₁ располагается вдоль линии Σ почти параллельно оси абсцисс. Обозначение высокосимметричных точек зоны Бриллюэна Г, М и К дано на рис. 1(б).

Рис. 5. Характеристики атомных смещений (собственных векторов) для двух поперечных акустических ветвей (а) $TA(C_{44})$ и (б) $TA(C_{66})$, а также (в) наиболее низкочастотная оптическая мода SM вблизи точки Γ .

Нижняя часть фононного спектра кварца вблизи $b \to a$ перехода представлена на рис. 4 вдоль линий, соединяющих высокосимметричные точки первой зоны Бриллюэна $\Gamma \to M \to K \to \Gamma$ (см. рис. 1. (б)). Как видно, вблизи фазового перехода наблюдается сильная анизотропия дисперсионных кривых. Следует отметить, что общая топология, значения частот и типичное взаимодействие мод, наблюдаемые на рис. 4, очень хорошо согласуются с экспериментальными данными.

Рис. 6. Частоты 27-ми колебательных мод (а) в точке Γ и (б) на линии Σ в точке, удаленной от Γ на b/3, как функции изменения объема структурной ячейки при движении по фазовой диаграмме вдоль линии $e_1 = e_2 = e_3$.

В настоящем исследовании наибольший интерес представляют мягкая оптическая мода (SM) в точке Γ , т.е., в начале координат обратного пространства, и акустическая ветвь TA₁ вдоль линии Σ , имеющая наименьшую частоту, поскольку эти моды важны для анализа фазового перехода и несоразмерных фаз. Вблизи точки Γ , две низкочастотные моды – это аку-

стические моды TA₁ и TA₂. Наиболее низкочастотная из них, это TA(C_{44}) которая имеет только акустическую компоненту u_z , как показано на рис. 5(а). Другая – это акустическая мода TA(C_{66}), с перемещениями атомов только в плоскости xy, как показано на рис. 5(б). Для больших значений волнового вектора k эти моды уже не являются чисто акустическими, и они содержат другие компоненты перемещений, однако для удобства условимся называть их акустическими во всем диапазоне k. Мягкая мода SM отвечает за вращение тетраэдров SiO₄, см. рис. 5(в). Эта мода взаимодействует с соответствующими компонентами акустической части моды TA₁.

Наиболее значительные изменения спектра при приближении к линии фазового перехода $T_{\rm tr}$ наблюдаются вдоль линии Σ по сравнению с остальными участками первой зоны Бриллюэна. Наибольшие изменения происходят в нижней части спектра, а именно, SM зануляется в точке Γ и мода TA₁ становится практически горизонтальной и весьма низкочастотной. На рис. 6 показаны частоты всех 27-ми колебательных мод (а) в точке Γ и (б) на линии Σ в точке, удаленной от Γ на b/3, как функции изменения объема структурной ячейки при движении по фазовой диаграмме вдоль линии $e_1 = e_2 = e_3$.

Перемещение и вращение тетраэдров SiO₄ вблизи перехода можно описать в терминах мод жестких кластеров (rigid unit modes), как было предложено в работах Дова. Нами была проведена оценка вкладов различных собственных мод во вращение тетраэдров SiO₄ как функции изменения объема структурной ячейки при движении по фазовой диаграмме вдоль линии $e_1 = e_2 = e_3$ и было показано, что именно SM и TA₁ моды ответственны за движение тетраэдров как жестких атомных кластеров, а суммарный вклад всех остальных мод в такое движение несущественен.

Расчет дисперсионных кривых показал, что в фазовом пространстве имеется область, где неустойчивы как a так и b фазы (см. рис. 3). Данная область имеет форму клина, ширина которого уменьшается при уменьшении e_3 , обращаясь в ноль при $e_3 = 0.058$. С изменением e_3 также происходит изменение координаты точки смягчения акустической моды, то есть изменение длины волны модулированной фазы. Заканчивается глава анализом упругих модулей кварца в различных областях фазовой диаграммы и анализом компонент перемещений в акустической моде, ответственной за переход. Делается вывод о хорошем качественном согласии с эксперимен-

тальными данными. Итогом второй и третьей глав является вывод о большей адекватности новой феноменологической модели несоразмерной фазы кварца, предложенной Асланяном. Данная модель устраняет некоторые из трудностей, с которыми сталкивалась теория, выдвинутая ранее в работах Долино.

Рис. 7. Частоты мягкой оптической моды SM в точке Γ (темные точки) и акустической моды TA₁ на линии Σ в точке, удаленной от Γ на b/3 (светлые точки), как функции (а) изменения объема структурной ячейки при движении по фазовой диаграмме вдоль линии $e_3 = 0.077$ (б) следа тензора напряжений, при движении по фазовой диаграмме вдоль линии $s_{zz} = 4s_{xx}$.

Рис. 8. Фазовая диаграмма кварца при нулевой температуре в пространстве напряжений. Область модулированных фаз располагается между линиями T_x и T_c . На вставке показано, как при движении от точки L_{Γ} к точке L_{M} , изменяется положение точки зануления моды TA₁ на линии Σ , что определяет длину волны модулированной фазы.

Рис. 9. (а) Компоненты перемещений акустической моды TA_1 на линии Σ в зависимости от точки зануления частоты моды. (б) Тот же результат отдельно для компоненты u_7 в увеличенном масштабе.

В четвертой главе рассматривается одномерная модель кристалла с частицами конечных размеров. Данная модель призвана дать простое и наглядное объяснение природы несоразмерной фазы и её связь с вращательными степенями свободы на микроуровне, роль которых, например, в кварце, играют повороты сравнительно жестких тетраэдрических кластеров SiO₄.

Рис. 10. Одномерная модель, представляющая собой цепочку частиц конечных размеров, связанных упругими шарнирами жесткости *F*, находящихся во внешнем потенциале с кубической нелинейностью (показано вертикальными пружинками) и под действием сжимающей осевой нагрузки *P*.

Рис. 11. Трансформация равновесной структуры с k = 19/77 (близко к k = 1/4) при фиксированном $F = \left[16\sin^4\left(19p/77\right)\right]^{-1} \approx 0.2605$ и увеличивающимся P. (а) Тривиальное решение (пара-фаза), (б) режим синусоидальной модуляции, (в) режим доменных стенок.

В рассматриваемой модели (см. рис. 10), частицы связаны упругими шарнирами жесткости *F*, кроме того, шарниры испытывают действие внешнего потенциала с кубической нелинейностью (показано вертикальными пружинками). Упругие шарниры и внешний потенциал стремятся поддерживать прямолинейную форму цепочки, но сжимающая осевая нагрузка *P* играет дестабилизирующую роль. Взаимодействие этих факторов может приводить к возникновению весьма разнообразных статических и динамических структур. При малых углах поворота частиц, модель описывается следующим уравнением движения

 $\mathbf{M}_{n} + F(u_{n-2} - 4u_{n-1} + 6u_n - 4u_{n+1} + u_{n+2}) + P(u_{n-1} - 2u_n + u_{n+1}) + u_n + u_n^3 = 0,$ (2) где $u_n(t)$ это вертикальное перемещение n -го шарнира.

На рис. 10 представлена фазовая диаграмма модели (2) на плоскости параметров (P, F). Из сравнения рис. 8 и рис. 10 видно, что фазовая диаграмма одномерной модели топологически эквивалентна фазовой диаграмме кварца.

Далее дается математическое описание несоразмерных фаз в синусоидальном режиме, а для четырех-периодической структуры – также и в режиме доменных стенок. Пример трансформации тривиального решения (пара-фазы) в режим с синусоидальной модуляцией и, наконец, в режим доменных стенок показан на примере четырех-периодической структуры на рис. 11(а-в), соответственно.

Работа завершается заключением и списком литературы.

Рис. 12. Фазовая диаграмма модели (2) на плоскости параметров (*P*, *F*).

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

1. Методами динамики решетки, молекулярной динамики и квазистатики построена и исследована фазовая диаграмма кварца в пространстве деформаций $e_1 = e_2$ и e_3 и в пространстве напряжений $S_{xx} = S_{yy}$ и

*S*_{*zz*}. В методе молекулярной статики эффект температуры учитывается путем изменения объема кристалла, учитывающего тепловое расширение. В методе молекулярной динамики влияние температуры описывается естественным образом за счет учета тепловых колебаний атомов в окрестности их равновесных положений.

2. Показано, что двумерное фазовое пространство может быть эффективно сведено к одномерному. В качестве единственного параметра, определяющего структуру кварца, может быть взято изменение объема структурной ячейки. Данный вывод согласуется с результатами других работ [12,13].

3. Построенная фазовая диаграмма кварца содержит наряду с *a* - и *b* -фазами все возможные модулированные фазы.

4. Межатомные потенциалы Цунеюки [10] с параметрами, найденными из первопринципных расчетов, дают адекватное описание фазовой диаграммы кварца, фононного спектра кристалла и описание упругих характеристик кристалла.

5. Показано, что в согласии с теорией несоразмерной фазы кварца, предложенной Т.А. Асланяном, в b -фазе мода TA₁ содержит компоненту перемещения u_z .

6. Показана возможность описания различных соразмерных и несоразмерных структур в рамках одномерной модели кристалла с частицами конечных размеров, представляющей собой обобщение классической мо-

дели f^4 путем учета взаимодействия вторых соседей.

7. Построена фазовая диаграмма одномерной модели и показана её топологическая эквивалентность фазовой диаграмме кварца. Проанализированы особенности поведения доменных стенок (солитонов) в соразмерной структуре периода четыре.

ЛИТЕРАТУРА

- 1. H.Z. Cummins, Phys. Rep. 185 (1990) 211.
- 2. T.A. Aslanyan and A.P. Levanyuk, Solid State Commun. 31 (1979) 547.
- T.A. Aslanyan, A.P. Levanyuk, M. Vallade, and J. Lajzerowicz, J. Phys. C: Solid State Phys. 16 (1983) 6705.

- 4. G. Dolino, J.P. Bachheimer, B. Berge, and C.M.E. Zeyen, J. Physique 45 (1984) 361.
- 5. G. Dolino, B. Berge, M. Vallade, F. Moussa, J. Phys. I France 2, (1992) 1461.
- 6. K. Gouhara and N. Kato, J. Phys. Soc. Jpn. 54 (1985) 1868.
- 7. K. Gouhara and N. Kato, J. Phys. Soc. Jpn. 54 (1985) 1882.
- 8. T.A. Aslanyan, T. Shigenari, K. Abe, and D.A. Semagin, Phys. Rev. B 73, 153101 (2006).
- 9. T.A. Aslanyan, T. Shigenari, and K. Abe, Acta Cryst. A 55 (1999) 65.
- 10. S. Tsuneyuki, M. Tsukada, H. Aoki, and Y. Matsui, Phys. Rev. Lett. 61 (1988) 869.
- 11. В.В. Кондратьев, В.Г. Пушин, ФММ.- Т. 60.- вып. 4.- 1985.- 629.
- 12. M.B. Smirnov and A.P. Mirgorodsky, Phys. Rev. Lett. 78 (1997) 2413.
- 13. M.B. Smirnov, Phys. Rev. B 59 (1999) 4036.

Основные результаты диссертации изложены в следующих работах:

1. Пожидаева О.В., Дмитриев С.В., Медведев Н.Н., Бебихов Ю.В., Самсонов А.В., Старостенков М.Д. Локализованная колебательная мода в двумерном упорядоченном сплаве // Фундаментальные проблемы современного материаловедения, Барнаул. – 2007. – Т. 4. - № 4. – С. 102-107.

2. Самсонов А.В., Дмитриев С.В., Старостенков М.Д. Фазовая диаграмма одномерной модели кристалла с частицами конечных размеров // Фундаментальные проблемы современного материаловедения, Барнаул. – 2007. – Т. 4. – № 4. – С. 83-90.

3. Самсонов А.В. Несоразмерная фаза в двумерной модели кристалла с частицами конечных размеров // Ползуновский альманах, Барнаул. – 2008. – № 3. – С. 153-154.

4. Самсонов А.В., Дмитриев С.В., Старостенков М.Д. Уравнение синус-Гордона для описания динамических структур с нечетным периодом в одномерной модели кристалла с частицами конечных размеров // Фундаментальные проблемы современного материаловедения, Барнаул. – 2008. – Т. 5. – № 4. – С. 17-21.

5. Самсонов А.В., Старостенков М.Д. Учет вращательных степеней свободы при моделировании несоразмерной фазы кристаллов // Материалы всероссийской научной конференции молодых ученых "Наука. Технологии. Инновации", 4-7 декабря 2008, г. Новосибирск. / Часть І. – 2008. – С. 89-91.

6. Самсонов А.В., Старостенков М.Д. Одномерная модель кристалла для моделирования несоразмерных фаз // Тезисы докладов Всероссийской молодежной научной конференции «Мавлютовские чтения», 28-29 октября 2008 г. Уфа. – 2008. – С. 110;

7. Дмитриев С.В., Потекаев А.И., Самсонов А.В. Длиннопериодические состояния кристаллической системы частиц конечных размеров // Изв. вузов. Физика. – 2009. – №6. – С. 68-82.

8. Бебихов Ю.В., Дмитриев С.В., Самсонов А.В., Старостенков М.Д. Моделирование сетки дислокаций несоответствия на границе медь/сапфир // Вестник СибГУТИ. – 2009. – № 3. – С. 23-31.

9. Самсонов А.В., Дмитриев С.В., Старостенков М.Д. Моделирование длиннопериодических структур в рамках одномерной модели кристалла // Тезисы докладов Международного симпозиума «Перспективные материалы и технологии», 25-29 мая 2009, Витебск, Беларусь. - С. 176.

10. Самсонов А.В., Дмитриев С.В., Старостенков М.Д. Анализ дисперсионных кривых кварца вблизи фазового перехода через несоразмерную фазу // Фундаментальные проблемы современного материаловедения, Барнаул. – 2010. – Т. 7. – № 4. – С. 112-116.

11. Самсонов А.В. Новая интерпретация несоразмерной фазы в кварце. Тезисы докладов Международной школы-конференции для студентов, аспирантов и молодых ученых «Фундаментальная математика и ее приложения в естествознании», 3-7 октября 2010, г. Уфа / Уфа. – 2010. – С. 129.

12. Самсонов А.В., Дмитриев С.В. Фазовая диаграмма кварца при нулевой температуре // Тезисы докладов II Школы-конференции стран СНГ «Ультрамелкозернистые и наноструктурые материалы», 11-15 октября 2010, г. Уфа / Уфа. – 2010. – С. 277.

13. Кузьменко М., Самсонов А.В., Дмитриев С.В. Динамика волн солитонного типа в дискретной модели j^4 с учетом вторых соседей // Тезисы докладов IX Международная научно-техническая конференция «Физика и технические приложения волновых процессов», 13-17 сентября 2010, г. Миасс / Челябинск. – 2010. – С. 27.

Подписано в печать 10.11.2010 г. Формат 60х84 1/16 Печать – ризография. Усл.п.л. 2,0. Тираж 105 экз. Заказ 2010-117

Отпечатано в типографии АлтГТУ 656038, г. Барнаул, пр-т Ленина, 46 Лицензия на полиграфическую деятельность ЛР № 020822 от 21.09.1998 г.